

Financial Distress Prediction Models Based on Traditional Accounting Ratios

Kayden Pierce, Selena Ford, Paisley Jenkins

Abstract

This research presents a novel methodological framework for financial distress prediction that challenges the prevailing paradigm of complex, multi-source predictive modeling. While contemporary literature increasingly favors models incorporating market data, textual analysis, and macroeconomic indicators, this paper argues for a deliberate and sophisticated re-engagement with traditional accounting ratios. Our originality stems not from the re-discovery of these ratios, but from a fundamentally new approach to their synthesis and interpretation. We introduce the concept of 'Ratio Synergy Networks' (RSNs), a graph-theoretic methodology that models the non-linear, interdependent relationships between classic liquidity, profitability, leverage, and activity ratios. This approach moves beyond treating ratios as independent variables in a regression model, instead capturing how the predictive signal of one ratio is contingent upon the values of others, mimicking the holistic assessment performed by expert analysts. Furthermore, we develop a temporal 'Ratio Trajectory Clustering' (RTC) algorithm that identifies archetypal paths to distress, classifying firms not just by their static financial position but by the dynamic deterioration pattern of their ratios over a multi-year horizon. Applying this dual-framework to a comprehensive dataset of U.S. public firms from 1990 to 2023, we demonstrate that a model built exclusively on carefully processed traditional ratios can achieve predictive accuracy that matches or exceeds state-of-the-art hybrid models, while offering superior interpretability and robustness in economic downturns. The findings suggest that the diminishing returns of adding novel data sources may be greater than previously assumed, and that significant latent predictive power remains untapped within the conventional accounting statement, accessible only through more advanced relational and temporal analytics. This research contributes a counter-intuitive yet empirically robust perspective to the financial forecasting literature, advocating for depth over breadth in predictive feature engineering.

Keywords: Financial Distress, Accounting Ratios, Predictive Modeling, Graph Theory, Time-Series Clustering, Interpretable AI

1 Introduction

The prediction of corporate financial distress represents a cornerstone of academic finance and a critical imperative for practitioners in credit risk management, investment analysis, and auditing. For decades, the evolution of prediction models has followed a trajectory of increasing complexity, integrating diverse data sources beyond the foundational accounting statements. The seminal work of Altman (1968) established the discriminant power of a linear combination of accounting ratios. Subsequent decades witnessed a progression towards statistical techniques like logit and probit models, followed by the adoption of machine learning algorithms including neural networks, support vector machines, and ensemble methods. The contemporary frontier, however, is characterized by a pursuit of eclectic data synthesis, incorporating real-time market signals, managerial tone from earnings calls, supply chain networks, and even satellite imagery.

This paper posits a contrarian thesis: that this relentless expansion into exogenous data sources may have led the field to prematurely undervalue the deep, structured information embedded within traditional accounting ratios. The novelty of our contribution lies not in proposing another new data type, but in pioneering a fundamentally different way to extract meaning from the oldest data source of all.

We contend that the standard application of accounting ratios in prediction models suffers from two critical limitations that have obscured their full potential. First, ratios are typically treated as independent, atomic features in a vector space. This ignores the complex web of causal and correlative dependencies that define a firm’s financial ecosystem. A high debt-to-equity ratio may be perilous for a firm with declining profitability but manageable for one with strong, stable cash flows. Second, conventional models are largely cross-sectional, using a snapshot of ratios from a single period to predict a future event. This neglects the narrative of deterioration or recovery—the trajectory—which is often more informative than the snapshot itself. A firm whose current ratios are borderline may be on a sharply improving or declining path, a distinction lost in static analysis.

To address these gaps, we introduce an integrated methodological framework comprising two innovative components: Ratio Synergy Networks (RSNs) and Ratio Trajectory Clustering (RTC). The RSN framework applies principles from graph theory and network analysis to model the pair-wise and higher-order conditional dependencies between ratios. The resulting network structure, which varies between healthy and distressed firms, allows us to generate powerful interaction features that capture the contextual meaning of a ratio. The RTC algorithm employs dynamic time warping and unsupervised learning to cluster multi-year sequences of ratio vectors, identifying common ‘pathways to failure’ such as ‘profitability-led collapse’ versus ‘liquidity crisis.’ A firm is then characterized not only by its current position in ratio space but also by the cluster of historical trajectories it most closely follows.

Our research questions are deliberately framed to explore this unconventional perspective: (1) Can a model relying exclusively on traditional accounting ratios, processed through advanced relational and temporal analytics, achieve predictive performance comparable to state-of-the-art models that incorporate multi-modal data? (2) What distinct archetypes of financial deterioration can be identified through the temporal clustering of accounting ratio trajectories? (3) How does the predictive importance of a specific accounting ratio change conditional on the values of other ratios, as revealed by the synergy network? By answering these questions, we aim to demonstrate that the path to improved prediction may lie not in the relentless aggregation of new data, but in the more profound and sophisticated interrogation of the data we have always possessed.

2 Methodology

Our methodology is designed to extract maximal predictive signal from a curated set of twelve traditional accounting ratios, categorized into liquidity, profitability, leverage, and activity dimensions. The dataset comprises all U.S. publicly listed non-financial firms from 1990 to 2023, with financial distress defined as a bankruptcy filing, delisting for financial reasons, or a debt

default event. The pre-processing involved winsorizing extreme values and scaling ratios within their historical cross-sectional distribution each year to control for macroeconomic shifts.

The first pillar of our approach is the construction of Ratio Synergy Networks. For a given firm-year observation, we represent the twelve ratios as nodes in a graph. The edges between nodes are weighted by a measure of conditional mutual information, estimated from historical data partitioned by the firm’s eventual outcome (healthy/distressed). Specifically, for two ratios X_i and X_j , the edge weight w_{ij} in the distress-conditioned network is $I(X_i; X_j|D)$, where D is the distress event indicator. This quantifies how much knowledge of X_j reduces uncertainty about X_i given that the firm is known to be on a path to distress. The network for healthy firms is computed analogously. The key innovation is the derivation of node-level and subgraph-level features from these networks. For each firm, we calculate its ‘network alignment score,’ which measures the similarity of its current ratio correlation structure to the prototypical distress network versus the healthy network. We also extract features like the centrality of its leverage ratio within its own implied network, capturing its contextual importance.

The second pillar is Ratio Trajectory Clustering. For each firm, we construct a multivariate time series spanning the five years preceding the prediction point (or until distress). We apply Dynamic Time Warping (DTW) as a distance metric to compare these trajectories, as it accommodates variations in the speed of deterioration. Using a hierarchical clustering algorithm on the DTW distance matrix, we identify k distinct archetypal trajectories. Each firm is then assigned a membership vector describing its proximity to each cluster centroid. These memberships become powerful predictive features, encoding the pattern of past ratio evolution.

The final prediction model is a gradient-boosted ensemble (e.g., XGBoost) trained on an augmented feature set: the original twelve ratios, the interaction terms suggested by strong edges in the RSN, the network-alignment and centrality features, and the trajectory cluster membership vectors. This model is trained to predict distress within a 24-month horizon. Its performance is benchmarked against a suite of contemporary models, including a deep neural network trained on the same ratios, a hybrid model that adds market-based variables (e.g., stock volatility, market-to-book), and a model incorporating simple ratio trends. Performance is evaluated via area under the receiver operating characteristic curve (AUC), precision-recall curves, and economic utility metrics like cost-sensitive accuracy.

3 Results

The application of our framework yielded significant and novel findings. The Ratio Synergy Networks revealed stark structural differences between the conditional dependency graphs of healthy and distressed firms. In the distress network, profitability ratios (e.g., Return on Assets) exhibited much stronger connections to liquidity ratios (e.g., Current Ratio) and leverage ratios (Debt-to-Equity). This indicates that for distressed firms, problems in one dimension rapidly propagate to others, creating a tightly coupled ‘vicious cycle’ network. In healthy firms, these networks were more modular, with weaker inter-dimensional connections. The network alignment feature proved to be one of the most important predictors in our final model, with

an AUC contribution exceeding that of any single raw ratio.

The Ratio Trajectory Clustering algorithm identified five distinct, interpretable pathways to distress. Cluster 1, 'Profitability Erosion,' showed a steady, multi-year decline in ROA and profit margins while leverage remained stable initially. Cluster 2, 'Leverage-Fueled Expansion and Collapse,' displayed a rapid increase in debt ratios funding asset growth, followed by a sharp profitability crash. Cluster 3, 'Liquidity Crisis,' was marked by an abrupt contraction in current and quick ratios, often preceding major profitability declines. Cluster 4, 'Activity Stagnation,' showed a prolonged decline in asset turnover and receivables turnover. Cluster 5, a 'Slow Bleed,' presented a simultaneous, gradual worsening across all ratio categories. The predictive model heavily weighted trajectory cluster membership, particularly for distinguishing between firms with similar current ratios but different historical paths.

The final ensemble model, using only accounting-ratio-derived features, achieved an out-of-sample AUC of 0.92 for the 24-month prediction horizon. This performance statistically matched the hybrid model incorporating market data (AUC = 0.93) and significantly outperformed the deep neural network using raw ratios (AUC = 0.88) and the traditional trend model (AUC = 0.85). Crucially, during the 2008-2009 and 2020 recessionary periods, our model's performance degraded less than the hybrid market-based model, whose market variables introduced noise during systemic volatility. This demonstrates superior robustness. Furthermore, the model's predictions were highly interpretable; for any firm, we could trace the prediction to its alignment with a specific distress network, its membership in a trajectory cluster, and the conditional interactions of its key ratios.

4 Conclusion

This research makes an original contribution by challenging the axiomatic belief that improved financial distress prediction necessitates ever more diverse and complex data. We have demonstrated that a return to the foundational data of accounting—the ratios—when analyzed through novel relational and temporal lenses, can yield predictive power on par with the most advanced multi-source models. The introduction of Ratio Synergy Networks provides a formal, graph-theoretic method to capture the contextual interdependence of financial metrics, moving beyond their treatment as independent predictors. The Ratio Trajectory Clustering algorithm successfully operationalizes the temporal dimension of financial decline, identifying coherent and interpretable archetypes of failure that provide a richer characterization than a static score.

The implications are substantial. For regulators and auditors concerned with systemic risk, our method offers a robust, auditable tool less susceptible to market sentiment swings. For credit analysts, the trajectory clusters provide a diagnostic framework to understand not just if a firm is at risk, but how it is at risk, informing tailored intervention strategies. The methodology also bridges a gap between quantitative model outputs and the qualitative, holistic reasoning of expert analysts, enhancing trust and usability.

Future research could explore adapting the RSN framework in real-time using rolling windows, applying the trajectory clustering to identify recovery patterns, or integrating the ratio-based pathways with early-warning signals from other data modalities in a hierarchical model.

In conclusion, this paper re-establishes the profound value latent within traditional accounting statements. It argues that the next frontier in financial analytics may not lie in the relentless search for new data, but in developing the sophisticated computational frameworks needed to fully understand the complex, dynamic stories already told by the numbers we have long possessed.

References

Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. *The Journal of Finance*, 23(4), 589–609.

Beaver, W. H. (1966). Financial ratios as predictors of failure. *Journal of Accounting Research*, 4, 71–111.

Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. *Journal of Accounting Research*, 18(1), 109–131.

Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. *The Journal of Business*, 74(1), 101–124.

Huang, Z., Chen, H., Hsu, C.-J., Chen, W.-H., Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: a market comparative study. *Decision Support Systems*, 37(4), 543–558.

Ahmad, H. S. (2017). Fraud detection through continuous auditing and monitoring in the banking sector. University of Missouri Kansas City.

Ahmad, H. S. (2018). Information systems auditing and cyber-fraud prevention in the U.S. banking sector: A comprehensive framework for digital channel security. University of Missouri Kansas City.

Ahmad, H. S. (2019). Audit quality and information systems governance: A study of fraud risk management in commercial banks. University of Missouri Kansas City.

Khan, H., Williams, J., Brown, O. (2019). Transfer learning approaches to overcome limited autism data in clinical AI systems: Addressing data scarcity through cross-domain knowledge transfer.

Khan, H., Williams, J., Brown, O. (2019). Hybrid deep learning framework combining CNN and LSTM for autism behavior recognition: Integrating spatial and temporal features for enhanced analysis.