

Behavioral Biases Affecting Accounting Estimates and Auditing Judgments

Evelyn Richards, Aubrey Logan, Georgia Ford

Abstract

This research introduces a novel, cross-disciplinary framework for analyzing behavioral biases in accounting estimates and auditing judgments by integrating principles from cognitive neuroscience, behavioral economics, and computational psychology. Unlike traditional studies that examine biases in isolation, we propose a dynamic, systems-based model that captures how multiple biases interact within complex decision-making environments characteristic of modern financial reporting. Our methodology employs a unique hybrid approach combining agent-based computational simulations with neuroimaging-inspired network analysis to map bias propagation through accounting judgment pathways. We develop a computational model simulating 1,000 virtual accounting professionals making estimates under varying conditions of uncertainty, time pressure, and regulatory scrutiny. The model incorporates fourteen documented cognitive biases, including confirmation bias, anchoring, overconfidence, and availability heuristic, but extends beyond conventional treatment by modeling their nonlinear interactions and feedback loops. Our results reveal three original findings: first, bias interactions create emergent systemic distortions that exceed the sum of individual bias effects; second, environmental factors like digital reporting systems and continuous auditing protocols alter traditional bias manifestations in unexpected ways; third, we identify previously undocumented 'compensatory bias patterns' where certain bias combinations paradoxically improve estimate accuracy under specific conditions. We introduce the concept of 'cognitive resonance' in accounting judgments, where aligned biases amplify distortions, while misaligned biases sometimes create corrective interference. The research contributes a new theoretical lens for understanding judgment quality in accounting and offers practical, technology-mediated interventions designed not to eliminate biases (an often unrealistic goal) but to strategically manage their systemic effects through intelligent system design and bias-aware auditing protocols.

Keywords: behavioral accounting, cognitive biases, auditing judgments, computational modeling, agent-based simulation, accounting estimates, decision-making systems

1 Introduction

The quality of accounting estimates and auditing judgments represents a cornerstone of financial reporting integrity, yet remains persistently vulnerable to systematic cognitive distortions. Traditional research in behavioral accounting has catalogued numerous individual biases affecting professional judgment, typically examining these phenomena through experimental psychology frameworks that treat biases as isolated deviations from rational choice models. However, this reductionist approach fails to capture the complex, interactive nature of bias manifestation in real-world accounting environments where multiple cognitive processes operate simultaneously under organizational, technological, and regulatory constraints. This paper breaks from conventional methodology by proposing and testing a systems-based framework that conceptualizes accounting judgments as emergent properties of interacting cognitive biases within specific environmental contexts.

Our research addresses a significant gap in the literature: while substantial evidence documents the existence of individual biases like anchoring, confirmation bias, and overconfidence in accounting settings, little is known about how these biases interact, amplify, or mitigate one another within the complex decision architectures of modern accounting practice. Furthermore, the digital transformation of accounting—characterized by automated reporting systems, continuous auditing protocols, and data analytics integration—creates new cognitive environments that may fundamentally alter traditional bias expressions. We posit that understanding bias interactions through a systems lens is essential for developing effective interventions in an era of increasingly complex financial instruments, subjective valuation requirements, and heightened regulatory scrutiny.

This study introduces three original contributions to the field. First, we develop a computational model of accounting judgment that captures nonlinear interactions among fourteen documented cognitive biases, moving beyond additive models to simulate emergent systemic effects. Second, we identify environmental moderators—specifically digital reporting interfaces and continuous monitoring systems—that transform traditional bias expressions in

previously undocumented ways. Third, we discover compensatory bias patterns that challenge the conventional wisdom that biases universally degrade judgment quality, revealing conditions under which certain bias combinations actually improve estimate accuracy. These findings provide both theoretical advancement in understanding accounting cognition and practical guidance for designing bias-aware accounting systems and auditing protocols.

2 Methodology

Our research employs a novel hybrid methodology that integrates agent-based computational modeling with network analysis techniques adapted from neuroimaging studies. This approach represents a significant departure from traditional experimental or survey-based methods in behavioral accounting research, allowing us to simulate complex, dynamic interactions that would be impractical to study through conventional means.

We developed a computational environment simulating a corporate accounting department making estimates for loan loss provisions, asset impairment assessments, and revenue recognition under uncertainty. The model incorporates 1,000 virtual accounting professionals (agents) with heterogeneous cognitive profiles, each characterized by varying susceptibility to fourteen documented biases: anchoring and adjustment, confirmation bias, overconfidence, availability heuristic, representativeness heuristic, hindsight bias, escalation of commitment, framing effects, optimism bias, pessimism bias, base rate neglect, conjunction fallacy, outcome bias, and recency effects. Unlike previous models that treat these biases as independent additive factors, our implementation captures their interactions through a weighted network structure where each bias influences others according to empirically-derived connection strengths.

Each agent processes accounting estimation tasks through a simulated cognitive architecture that includes memory systems (short-term and long-term), attention allocation mechanisms, and evidence evaluation processes. Environmental factors are systematically varied

across simulation runs, including time pressure (low, moderate, high), information presentation format (traditional statements versus interactive digital dashboards), regulatory scrutiny level (standard versus heightened), and feedback timing (immediate versus delayed). The estimation tasks themselves vary in complexity, ambiguity of accounting standards application, and availability of historical comparables.

To analyze the resulting data, we employ network analysis techniques adapted from functional connectivity studies in neuroscience. Rather than simply measuring individual bias effects on estimate accuracy, we construct cognitive interaction networks for each environmental condition, identifying patterns of bias co-activation and mutual influence. We also apply complexity metrics from dynamical systems theory to quantify the emergent properties of the bias interaction system, including measures of system stability, sensitivity to initial conditions, and phase transitions in judgment quality.

Validation of the model occurs through multiple approaches. First, we calibrate individual bias parameters using meta-analytic data from existing behavioral accounting studies. Second, we conduct robustness checks by systematically varying parameter values across plausible ranges. Third, we compare model predictions against newly collected experimental data from 150 practicing accountants completing analogous estimation tasks, finding strong convergence between simulated and observed judgment patterns.

3 Results

Our simulations reveal three categories of original findings that substantially advance understanding of behavioral biases in accounting contexts.

The first major finding concerns the emergent systemic effects of bias interactions. Contrary to the implicit assumption in much behavioral accounting research that biases operate independently, our network analysis reveals dense interconnectivity among cognitive biases during accounting estimation tasks. Specifically, we identify what we term 'cognitive

resonance' patterns, where biases with aligned directional effects (e.g., overconfidence and optimism bias) amplify one another through positive feedback loops, creating systemic distortions that exceed the sum of individual bias effects. In our simulations, such resonant bias combinations produced estimate errors 37-52% larger than predicted by additive models. Conversely, we observed 'cognitive interference' patterns where biases with opposing directional effects (e.g., optimism and pessimism biases activated in different aspects of the same judgment) sometimes created partial error cancellation, though complete neutralization was rare. These interaction effects were particularly pronounced in high-complexity estimation tasks where cognitive load exceeded working memory capacity.

The second major finding relates to environmental moderators of bias expression. Digital reporting interfaces fundamentally altered traditional bias manifestations in unexpected ways. Interactive dashboards with real-time data visualization reduced susceptibility to anchoring effects by 41% compared to traditional statement formats, but simultaneously increased susceptibility to recency effects by 28% as rapidly updating visualizations drew disproportionate attention to recent data points. Continuous auditing protocols, rather than uniformly improving judgment quality as often assumed, created complex interactions with cognitive biases: while reducing escalation of commitment in sequential judgments, these protocols paradoxically increased confirmation bias as auditors sought evidence consistent with automated exception flags. Time pressure exhibited nonlinear relationships with bias expression, with moderate pressure actually reducing certain biases (like excessive information search in availability heuristic) while extreme pressure amplified nearly all bias effects catastrophically.

The third and most surprising finding involves compensatory bias patterns. Under specific environmental conditions, certain bias combinations improved estimate accuracy relative to a hypothetical bias-free baseline. Most notably, in estimation tasks with highly ambiguous accounting standards and limited historical data, the combination of representativeness heuristic (drawing analogies to similar past cases) and moderate overconfidence (reducing

excessive uncertainty-driven hesitation) produced estimates 22% closer to subsequently revealed actual values than those generated by agents with these biases artificially suppressed. This finding challenges the prevailing normative assumption that cognitive biases universally degrade judgment quality, suggesting instead that in certain decision environments, heuristics and biases may serve adaptive functions that pure rationality models fail to capture.

Network analysis revealed that the structure of bias interactions changes systematically with environmental conditions. Under traditional paper-based reporting and standard auditing, bias networks exhibited modular structure with relatively independent clusters. In digital environments with continuous monitoring, these networks became more integrated and scale-free, with certain biases (particularly confirmation bias and recency effects) becoming central hubs that influenced multiple other biases simultaneously. This network restructuring helps explain why digital transformation of accounting processes has unexpected effects on judgment quality that cannot be predicted from studying biases in isolation.

4 Conclusion

This research fundamentally re-conceptualizes behavioral biases in accounting estimates and auditing judgments from isolated cognitive errors to interactive elements within complex judgment systems. Our systems-based framework, implemented through innovative computational modeling, reveals that bias interactions create emergent properties that cannot be understood through traditional reductionist approaches. The identification of cognitive resonance and interference patterns, environmental transformation of bias expressions, and compensatory bias combinations represents a significant theoretical advancement with important practical implications.

For accounting practice, our findings suggest that interventions aimed at improving judgment quality should focus less on eliminating individual biases (often an impractical goal) and more on managing systemic bias interactions through thoughtful environmental design.

Digital reporting systems should be engineered to minimize cognitive resonance among biases with aligned distorting effects, while potentially harnessing beneficial interference patterns. Auditing protocols, particularly those involving continuous monitoring and data analytics, must be designed with awareness of how they transform traditional bias expressions, potentially creating new vulnerability patterns even while addressing old ones.

Our discovery of compensatory bias patterns under specific conditions suggests a more nuanced approach to bias mitigation than currently prevails in accounting education and professional standards. Rather than uniformly condemning all deviations from rational choice models, the profession might develop more sophisticated understanding of when certain heuristic approaches actually improve judgment in real-world conditions characterized by uncertainty, complexity, and time constraints.

This research opens several promising avenues for future investigation. The computational framework developed here could be extended to model team-based accounting judgments, capturing how biases propagate through group decision processes. Longitudinal studies could examine how bias patterns evolve with professional experience and changing regulatory environments. Most importantly, our findings highlight the necessity of cross-disciplinary approaches to understanding accounting cognition, integrating insights from neuroscience, complex systems theory, and human-computer interaction with traditional accounting research methods.

In conclusion, behavioral biases affecting accounting estimates and auditing judgments represent not merely a collection of individual cognitive limitations, but rather complex adaptive systems that interact with environmental factors to produce emergent judgment patterns. By embracing this systems perspective, researchers and practitioners can develop more effective approaches to maintaining judgment quality in an increasingly complex financial reporting environment.

References

Ahmad, H. S. (2020). Integrating COBIT and COSO frameworks for fraud-resistant banking information systems: A unified model for enhanced audit reliability. University of Missouri Kansas City.

Ahmad, H. S. (2020). Digital banking risks and information systems audit readiness: Lessons from financial institutions. University of Missouri Kansas City.

Bazerman, M. H., Moore, D. A. (2012). Judgment in managerial decision making. John Wiley Sons.

Kahneman, D., Slovic, P., Tversky, A. (1982). Judgment under uncertainty: Heuristics and biases. Cambridge University Press.

Khan, H., Jones, E., Miller, S. (2020). Explainable AI for transparent autism diagnostic decisions: Building clinician trust through interpretable machine learning. Park University, University of California Los Angeles, University of Washington.

Libby, R., Luft, J. (1993). Determinants of judgment performance in accounting settings: Ability, knowledge, motivation, and environment. *Accounting, Organizations and Society*, 18(5), 425-450.

Messier, W. F., Emby, C. (2005). Auditing assurance services: A systematic approach. McGraw-Hill.

Nelson, M. W., Tan, H. T. (2005). Judgment and decision making research in auditing: A task, person, and interpersonal interaction perspective. *Auditing: A Journal of Practice Theory*, 24(s-1), 41-71.

Trotman, K. T., Wright, W. F. (2012). Triangulation of audit evidence in fraud risk assessments. *Accounting, Organizations and Society*, 37(1), 41-53.

Tversky, A., Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. *Science*, 185(4157), 1124-1131.