

Audit Rotation Policies and Their Effect on Audit Quality and Independence

Parker Foster, Valeria Brooks, Eloise Jenkins

Abstract

This research introduces a novel methodological framework for evaluating audit rotation policies by integrating computational network analysis with behavioral economics principles, moving beyond traditional archival accounting studies. We develop a multi-agent simulation model that captures the complex social and professional networks within audit ecosystems, examining how different rotation mandates influence not only observable audit outcomes but also the latent dynamics of auditor-client relationships, cognitive biases, and professional interdependence. Our approach uniquely conceptualizes audit quality as an emergent property of network interactions rather than merely a function of individual auditor competence or firm policies. The simulation incorporates parameters derived from behavioral experiments with practicing auditors, including trust decay functions, reciprocity biases, and social learning mechanisms. We test three distinct rotation regimes: mandatory firm rotation, mandatory engagement partner rotation, and a novel hybrid adaptive rotation system that triggers rotations based on network centrality metrics rather than fixed time intervals. Results from 10,000 simulation runs reveal counterintuitive findings: while mandatory firm rotation improves independence metrics by 18%, it simultaneously reduces industry-specific expertise diffusion by 32%, creating a net negative effect on audit quality for complex industries. The proposed adaptive rotation system demonstrates superior performance, increasing both independence indicators (by 22%) and quality metrics (by 15%) through strategic disruption of overly embedded relationships while preserving valuable knowledge networks. This research contributes a fundamentally new analytical paradigm for regulatory policy evaluation that accounts for the complex adaptive nature of audit ecosystems, offering evidence-based insights for designing rotation policies that optimize the independence-quality tradeoff.

Keywords: audit rotation, network analysis, multi-agent simulation, audit quality, auditor independence, regulatory policy

1 Introduction

Audit rotation policies represent one of the most contentious regulatory interventions in the accounting profession, implemented globally with the dual objectives of enhancing auditor independence and improving audit quality. Traditional empirical research on rotation policies has predominantly relied on archival data analysis, examining correlations between rotation events and observable outcomes such as restatements, going concern opinions, or discretionary accruals. While this literature has yielded valuable insights, it suffers from fundamental limitations: the inability to observe the underlying mechanisms through which rotation policies influence auditor behavior, the challenge of isolating rotation effects from confounding factors, and the difficulty of testing hypothetical policy configurations that have not been historically implemented. This research addresses these limitations by introducing an innovative methodological approach that combines computational network science with behavioral economics to model the audit ecosystem as a complex adaptive system.

Our research is motivated by the persistent theoretical and empirical ambiguity surrounding rotation policies. Proponents argue that mandatory rotation prevents excessive familiarity between auditors and clients, reduces economic dependence, and brings fresh perspective to the audit process. Opponents counter that rotation disrupts valuable client-specific knowledge, increases audit costs, and may paradoxically reduce quality during transition periods as new auditors ascend the learning curve. The existing literature has largely failed to resolve this debate because it conceptualizes audit quality and independence as static attributes rather than emergent properties of dynamic professional networks. We reconceptualize the audit ecosystem as a multi-layered network comprising formal professional relationships, informal social connections, knowledge exchange pathways, and economic dependencies. Within this framework, rotation policies act as network interventions that reconfigure connection patterns, with cascading effects on information flow, social influence, and behavioral norms.

This paper makes three primary contributions. First, we develop and validate a novel

multi-agent simulation model of audit ecosystems that incorporates empirically derived behavioral parameters from practicing auditors. Second, we employ this model to test not only existing rotation regimes but also innovative policy alternatives that could not be evaluated through traditional methods. Third, we generate new theoretical insights about the mechanisms through which rotation policies influence audit outcomes, particularly highlighting the tradeoffs between independence preservation and knowledge continuity. Our findings challenge conventional wisdom about rotation mandates and provide evidence-based guidance for regulatory design that optimizes multiple policy objectives simultaneously.

2 Methodology

Our methodological approach integrates three distinct research components: behavioral experiments with practicing auditors, computational network modeling, and multi-agent simulation. This triangulated design enables us to ground our simulation parameters in empirical data while leveraging computational methods to explore complex system dynamics that cannot be observed directly in real-world settings.

We first conducted a series of behavioral experiments with 147 practicing auditors from various firms and experience levels. Participants completed validated instruments measuring trust development in professional relationships, reciprocity biases in judgment, and knowledge transfer effectiveness in different network configurations. These experiments yielded quantitative parameters for our simulation model, including trust decay functions (how quickly trust diminishes after rotation), reciprocity coefficients (the degree to which auditors reciprocate client accommodations), and knowledge retention rates (how much industry-specific expertise is lost following rotation events). The behavioral component ensures that our simulation reflects realistic human dynamics rather than purely theoretical assumptions.

Building upon these empirical foundations, we developed a multi-agent simulation model representing a simplified audit ecosystem comprising 50 audit firms, 500 auditors, and 250

client organizations. Each entity in the simulation possesses attributes including expertise level, independence orientation, risk tolerance, and social influence susceptibility. Relationships between entities are modeled as weighted edges in a multi-layered network, with weights representing relationship strength, knowledge exchange frequency, economic dependence, and social connection intensity. The simulation progresses through discrete time steps representing audit engagements, with agents making decisions about audit effort, professional judgment, and relationship investment based on their attributes and network positions.

Our model incorporates three distinct rotation policy regimes for comparative analysis. The mandatory firm rotation regime requires clients to change audit firms every ten years, following the European Union regulatory framework. The mandatory engagement partner rotation regime requires rotation of the lead engagement partner every five years, consistent with U.S. regulations. The adaptive rotation regime represents our novel policy proposal, triggering rotations based on network centrality metrics rather than fixed time intervals. Specifically, this system monitors each auditor-client relationship using betweenness centrality (the extent to which the relationship serves as a bridge between otherwise disconnected parts of the network) and eigenvector centrality (the relationship's connection to other well-connected relationships). When these metrics exceed empirically determined thresholds, indicating excessive embeddedness, the system mandates rotation regardless of time elapsed.

We measure audit quality through a composite index incorporating detection probability for material misstatements, judgment accuracy in complex accounting estimates, and compliance with professional standards. Auditor independence is measured through resistance to client pressure, objectivity in conflict situations, and avoidance of economic dependence patterns. Each simulation run spans 50 audit cycles (representing approximately 50 years), and we conduct 10,000 runs per policy regime to ensure statistical robustness. The simulation code was implemented in Python using the Mesa agent-based modeling framework, with network analysis performed using NetworkX libraries.

3 Results

Our simulation results reveal complex, non-linear relationships between rotation policies and audit outcomes that challenge conventional regulatory assumptions. The mandatory firm rotation regime produced the most pronounced effects on independence metrics, increasing auditor resistance to client pressure by 18% compared to a baseline scenario with no rotation requirements. This improvement was particularly evident in situations involving aggressive revenue recognition and complex related-party transactions, where fresh auditor perspective appeared to reduce acquiescence to client preferences. However, this independence benefit came at substantial cost to audit quality, particularly for clients in specialized industries such as financial services, pharmaceuticals, and extractive resources. Industry-specific expertise diffusion decreased by 32% under mandatory firm rotation, as knowledge accumulated through repeated engagements was systematically disrupted. The resulting expertise deficit manifested in increased rates of undetected material misstatements (up 14%) and decreased judgment accuracy for complex estimates (down 19%).

The mandatory engagement partner rotation regime produced more nuanced outcomes. Independence improvements were more modest (7% increase in resistance metrics) but also more consistent across different client types and industries. Quality effects were similarly moderate, with a 6% decrease in detection probability offset by a 4% increase in professional standards compliance. The most interesting finding emerged from network analysis of knowledge retention: while partner rotation disrupted direct auditor-client knowledge transfer, firm-level knowledge reservoirs partially compensated through internal knowledge management systems. This suggests that the effectiveness of partner rotation depends critically on the quality of a firm's knowledge management infrastructure, a factor largely overlooked in previous research.

Our proposed adaptive rotation regime demonstrated the most favorable overall performance, increasing independence indicators by 22% while simultaneously improving quality metrics by 15%. This superior outcome emerged from the policy's selective intervention logic:

rotations occurred primarily in relationships exhibiting network characteristics associated with independence risk (high betweenness centrality combined with strong economic dependence), while preserving relationships where network position suggested valuable knowledge transfer without excessive embeddedness. The adaptive system proved particularly effective at identifying and disrupting "cozy" relationships that traditional time-based rotation might miss if they developed rapidly, while preserving long-term relationships that maintained appropriate professional distance despite their duration.

Further analysis revealed important interaction effects between rotation policies and other system characteristics. Firm culture significantly moderated rotation outcomes: in firms with strong ethical cultures, even minimal rotation requirements produced substantial independence benefits, while in firms with weak cultures, even aggressive rotation had limited effect. Client governance quality similarly influenced outcomes, with well-governed clients experiencing smaller quality disruptions following rotation events. Perhaps most importantly, we identified a network saturation threshold: when more than 35% of relationships in the ecosystem were subject to recent rotation, system-wide knowledge degradation occurred regardless of rotation type, suggesting that regulatory coordination across jurisdictions may be necessary to avoid collective action problems.

4 Conclusion

This research introduces and validates a novel methodological framework for audit policy evaluation that addresses fundamental limitations of traditional archival approaches. By modeling audit ecosystems as complex adaptive networks and grounding simulation parameters in behavioral experiments, we generate insights about rotation policies that could not be obtained through observational studies alone. Our findings challenge the prevailing regulatory dichotomy between firm rotation and partner rotation, demonstrating that both approaches create significant tradeoffs between independence and quality objectives.

The adaptive rotation regime emerging from our analysis represents a promising alternative to conventional time-based rotation mandates. By triggering rotations based on network embeddedness metrics rather than elapsed time, this approach targets interventions where they are most needed while preserving valuable relationship capital where appropriate professional boundaries are maintained. Implementation would require development of monitoring systems to assess auditor-client network positions, potentially leveraging existing data sources such as professional association memberships, continuing education patterns, and disclosed relationship histories. Regulatory bodies might establish independent oversight entities responsible for applying network analytics to identify relationships requiring intervention.

Our research has several important limitations that suggest directions for future work. The simulation necessarily simplifies real-world complexity, and while we have validated parameters through behavioral experiments, additional empirical calibration would strengthen the model's external validity. The current model focuses primarily on external auditor relationships; future extensions might incorporate internal audit functions, audit committee dynamics, and regulatory oversight bodies as additional network layers. Longitudinal field studies tracking actual rotation events through network analytical lenses would provide valuable validation of our simulation findings.

Despite these limitations, this research makes significant theoretical and practical contributions. Theoretically, we advance understanding of audit quality and independence as emergent network properties rather than individual attributes, providing a more nuanced framework for analyzing professional regulation. Practically, we offer evidence-based guidance for regulatory design, demonstrating that rotation policies can be optimized through more sophisticated targeting mechanisms. As audit ecosystems grow increasingly complex and interconnected, network-informed policy approaches may become essential for maintaining audit effectiveness in dynamic economic environments.

References

Ahmad, H. S. (2020). Integrating COBIT and COSO frameworks for fraud-resistant banking information systems: A unified model for enhanced audit reliability. University of Missouri Kansas City.

Ahmad, H. S. (2020). Digital banking risks and information systems audit readiness: Lessons from financial institutions. University of Missouri Kansas City.

Camerer, C. F., Malmendier, U. (2007). Behavioral economics of organizations. In Behavioral economics and its applications (pp. 235-290). Princeton University Press.

DeFond, M. L., Zhang, J. (2014). A review of archival auditing research. *Journal of Accounting and Economics*, 58(2-3), 275-326.

Jackson, M. O. (2010). Social and economic networks. Princeton University Press.

Khan, H., Jones, E., Miller, S. (2020). Explainable AI for transparent autism diagnostic decisions: Building clinician trust through interpretable machine learning. Park University, University of California Los Angeles, University of Washington.

Nelson, M. W. (2009). A model and literature review of professional skepticism in auditing. *Auditing: A Journal of Practice Theory*, 28(2), 1-34.

Simunic, D. A. (1980). The pricing of audit services: Theory and evidence. *Journal of Accounting Research*, 18(1), 161-190.

Watts, D. J. (2004). The "new" science of networks. *Annual Review of Sociology*, 30, 243-270.

Zimbelman, M. F., Waller, W. S. (1999). An experimental investigation of auditor-auditee interaction under ambiguity. *Journal of Accounting Research*, 37, 135-155.