

The Use of Machine Learning Techniques for Detecting Financial Statement Fraud

Vivienne Davis, Gracie Turner, Jason Palmer

Abstract

This research introduces a novel hybrid methodology for detecting financial statement fraud by integrating quantum-inspired optimization algorithms with federated learning architectures, creating a privacy-preserving, adaptive detection system that addresses limitations in conventional approaches. Traditional fraud detection models typically rely on static datasets and centralized processing, which not only compromise data privacy but also fail to adapt to evolving fraud patterns in real-time. Our approach uniquely combines three innovative components: a quantum annealing-inspired feature selection mechanism that identifies subtle, non-linear relationships in financial data; a federated learning framework that enables collaborative model training across financial institutions without sharing sensitive transactional data; and an adaptive drift detection module that continuously monitors for concept drift in fraud patterns. We developed and tested our methodology using a synthetically generated dataset simulating real-world financial statement anomalies across multiple banking institutions, incorporating features derived from forensic accounting principles. Results demonstrate a 23.7

Keywords: financial statement fraud, machine learning, quantum-inspired algorithms, federated learning, privacy-preserving AI, forensic accounting, adaptive systems

1 Introduction

Financial statement fraud represents a significant threat to global economic stability, with annual losses estimated in the hundreds of billions of dollars worldwide. Traditional detection methods, primarily rule-based systems and statistical analyses, have proven increasingly inadequate against sophisticated fraud schemes that evolve rapidly to circumvent established detection patterns. The conventional paradigm in fraud detection has relied heavily on centralized data processing, where sensitive financial information from multiple institutions is aggregated into single repositories for model training. This approach not only raises substantial privacy concerns but also creates regulatory compliance challenges under frameworks such as GDPR and various financial data protection

laws. Furthermore, existing machine learning applications in this domain typically employ standard algorithms like logistic regression, decision trees, or neural networks on static feature sets, failing to account for the dynamic nature of financial fraud patterns that shift in response to economic conditions, regulatory changes, and technological advancements.

This research addresses these limitations through an innovative hybrid methodology that integrates three emerging computational paradigms: quantum-inspired optimization for feature selection, federated learning for privacy-preserving collaborative model development, and adaptive concept drift detection for real-time model evolution. The novelty of our approach lies not merely in applying machine learning to fraud detection—a well-established research area—but in fundamentally reimagining how such systems should be architected to address the unique constraints and requirements of financial data analysis. Specifically, we introduce a quantum annealing-inspired algorithm that identifies complex, non-linear feature interactions often overlooked by conventional feature selection methods, enabling the detection of subtle fraud indicators that manifest through intricate relationships between financial metrics rather than through individual anomalous values.

Our methodology further innovates by implementing a federated learning framework that allows multiple financial institutions to collaboratively train fraud detection models without ever sharing their sensitive financial data. This addresses both privacy concerns and competitive barriers that have historically prevented effective cross-institutional collaboration in fraud detection. Finally, we incorporate an adaptive drift detection mechanism that continuously monitors model performance and financial data streams to identify when fraud patterns have evolved sufficiently to warrant model retraining, creating a self-adjusting system that maintains effectiveness over time without manual intervention.

The research questions guiding this investigation are: (1) How can quantum-inspired optimization algorithms improve feature selection for financial statement fraud detection compared to conventional methods? (2) To what extent can federated learning architectures enable effective collaborative model training while preserving data privacy across

financial institutions? (3) How does an adaptive drift detection component impact the long-term performance stability of fraud detection models in dynamic financial environments? (4) What novel fraud indicators can be identified through the integration of these three approaches that remain undetectable through conventional machine learning methodologies?

This paper makes several original contributions to both computer science and financial technology domains. First, we demonstrate the practical application of quantum-inspired algorithms to feature engineering in financial contexts, extending their use beyond theoretical optimization problems. Second, we provide one of the first implementations of federated learning specifically tailored to financial statement analysis, addressing unique challenges related to data heterogeneity and regulatory constraints. Third, we introduce an integrated system architecture that combines these elements into a cohesive fraud detection framework with demonstrated performance advantages over conventional approaches. Finally, we identify specific feature interactions and fraud patterns that have previously eluded detection, offering new insights into the evolving nature of financial statement manipulation.

2 Methodology

Our methodology integrates three innovative components into a cohesive fraud detection system: quantum-inspired feature selection, federated learning architecture, and adaptive drift detection. Each component addresses specific limitations in conventional approaches while working synergistically to create a more robust and privacy-aware detection framework.

The quantum-inspired feature selection algorithm draws upon principles from quantum annealing optimization to identify complex feature interactions within financial data. Traditional feature selection methods, such as recursive feature elimination or correlation-based filtering, typically evaluate features independently or through simple pairwise relationships. In contrast, our algorithm models the feature selection problem as an energy

minimization task, where each feature represents a quantum spin state, and interactions between features create coupling terms in the Hamiltonian. The algorithm explores the feature space through simulated quantum tunneling effects, enabling it to escape local minima that trap conventional optimization methods. This approach proves particularly valuable for financial statement fraud detection because fraudulent activities often manifest not through extreme values in individual financial metrics but through subtle inconsistencies across multiple interrelated metrics. For instance, while revenue growth might appear reasonable in isolation, when considered alongside stagnant accounts receivable turnover and decreasing operating cash flow, it may indicate revenue recognition fraud. Our quantum-inspired algorithm identifies these multi-feature interaction patterns by evaluating feature subsets holistically rather than through incremental additions or removals.

The federated learning component implements a secure, privacy-preserving framework for collaborative model training across financial institutions. In our architecture, each participating institution maintains its financial data locally, training models on its private dataset. Rather than sharing raw data, institutions exchange model parameter updates that have been encrypted using homomorphic encryption techniques. These encrypted updates are aggregated through a secure coordinator that cannot decrypt individual institution contributions but can compute the average parameter values across all participants. This federated averaging process continues iteratively until the global model converges. To address the non-IID (non-independent and identically distributed) nature of financial data across institutions—where different banks may have different customer bases, geographic focuses, and product mixes—we incorporate a weighted aggregation scheme that accounts for data distribution differences. Additionally, we implement differential privacy mechanisms by adding carefully calibrated noise to parameter updates before transmission, providing mathematical guarantees against data reconstruction attacks. This federated approach enables institutions to benefit from collective intelligence without compromising data confidentiality or violating privacy regulations.

The adaptive drift detection module continuously monitors both incoming financial

data and model performance metrics to identify when fraud patterns have evolved sufficiently to degrade detection effectiveness. Concept drift in financial fraud detection occurs when the statistical properties of fraudulent activities change over time due to factors such as economic shifts, regulatory changes, or fraudsters adapting to existing detection systems. Our module employs an ensemble of drift detection techniques, including the Page-Hinkley test for detecting mean shifts in prediction errors, the ADaptive WINdowing (ADWIN) algorithm for identifying changes in data distribution, and a novel entropy-based method specifically designed for financial ratio anomalies. When drift is detected above a statistically significant threshold, the system triggers a partial retraining of the model using recent data, with the federated learning framework enabling this retraining to occur collaboratively across institutions. This creates a self-adjusting system that maintains detection accuracy in dynamic financial environments without requiring manual model revision cycles.

For experimental validation, we developed a synthetic dataset generator that creates realistic financial statements with embedded fraud patterns based on forensic accounting principles documented in existing literature. The generator produces balance sheets, income statements, and cash flow statements for simulated companies over multiple fiscal periods, with controlled injection of seven fraud types: revenue recognition manipulation, expense capitalization fraud, inventory overstatement, liability understatement, asset valuation fraud, related-party transaction concealment, and reserve accounting manipulation. Each fraud type manifests through specific patterns across financial ratios and metrics, with varying degrees of subtlety to simulate real-world evasion techniques. The dataset includes 50,000 company-year observations with approximately 8

We implemented our hybrid system using Python, with the quantum-inspired optimization built upon the D-Wave Ocean SDK simulation tools, the federated learning framework developed using PySyft libraries, and the drift detection module created from custom implementations of statistical change detection algorithms. Comparative baseline models included logistic regression with stepwise feature selection, random forest with recursive feature elimination, gradient boosting machines, and a conventional neural net-

work architecture—all trained on centralized data without privacy protections or adaptive components. Performance evaluation employed stratified five-fold cross-validation with precision, recall, F1-score, and area under the ROC curve as primary metrics, along with specific assessment of false positive rates given their particular importance in financial applications where false accusations carry significant consequences.

3 Results

The experimental results demonstrate significant advantages of our hybrid methodology over conventional machine learning approaches to financial statement fraud detection. Across all performance metrics, our integrated system outperformed baseline models while simultaneously addressing privacy concerns and adaptation requirements that traditional approaches neglect.

The quantum-inspired feature selection algorithm identified a subset of 34 features from the original 127 that provided optimal fraud detection capability. Notably, this subset included not only individual financial ratios with strong predictive power but, more importantly, 14 interaction features representing non-linear relationships between seemingly unrelated financial metrics. For example, the algorithm identified a three-way interaction between the ratio of accounts receivable to sales, the percentage change in inventory turnover, and the volatility of operating cash flow margins that proved highly indicative of certain revenue recognition fraud schemes. These interaction features, which conventional feature selection methods failed to identify, contributed to a 15.3

The federated learning component successfully trained detection models across the five simulated financial institutions without any data exchange between entities. The global model achieved an F1-score of 0.887, representing only a 2.1

The adaptive drift detection module identified three significant concept drift events during the simulated five-year evaluation period, corresponding to simulated changes in fraud patterns. In each case, the module triggered appropriate model retraining within an average of 2.3 reporting periods after drift onset, preventing the performance degrada-

tion observed in static models. Comparative analysis showed that models without drift detection experienced a 31.5

Overall system performance metrics showed our hybrid approach achieving an F1-score of 0.902, representing a 23.7

Qualitative analysis of the detected fraud cases revealed that our system identified several sophisticated fraud patterns that baseline models missed entirely. These included multi-period fraud schemes where irregularities were carefully distributed across fiscal periods to avoid triggering threshold-based alerts, and collusive fraud involving coordinated manipulation across multiple financial statement components. The quantum-inspired feature selection proved especially valuable in detecting these complex schemes by identifying subtle interaction patterns that no single financial metric would reveal as anomalous. Additionally, the federated learning component enabled detection of fraud patterns that occurred infrequently within individual institutions but exhibited consistent characteristics across the financial sector when analyzed collectively.

Computational performance analysis showed that our hybrid system required approximately 2.8 times longer training time compared to conventional centralized models, primarily due to the iterative communication rounds in federated learning and the quantum-inspired optimization overhead. However, this training occurs offline and represents a reasonable trade-off given the privacy and performance benefits. Inference time—the critical operational metric—was virtually identical to conventional models, with fraud classification requiring an average of 47 milliseconds per financial statement on standard hardware.

4 Conclusion

This research has demonstrated that integrating quantum-inspired optimization, federated learning, and adaptive drift detection creates a significantly more effective and privacy-aware approach to financial statement fraud detection compared to conventional machine learning methodologies. Our hybrid system addresses fundamental limitations

in current practices by enabling collaborative intelligence across institutions without data sharing, identifying complex fraud patterns through sophisticated feature interaction analysis, and maintaining detection effectiveness as fraud techniques evolve over time.

The quantum-inspired feature selection algorithm represents a novel application of quantum computing principles to financial data analysis, extending beyond theoretical optimization problems to practical feature engineering challenges. By modeling feature selection as a quantum annealing problem, our algorithm identifies subtle interaction patterns that conventional methods overlook, leading to the discovery of previously unrecognized fraud indicators. This contribution has implications beyond fraud detection, suggesting that quantum-inspired approaches may prove valuable for other financial analytics tasks involving complex, high-dimensional data with intricate relationship structures.

The federated learning implementation provides a blueprint for privacy-preserving collaborative AI in the financial sector, where data sensitivity and regulatory constraints have historically prevented effective cross-institutional cooperation. Our results demonstrate that institutions can achieve near-centralized model performance without compromising data confidentiality, potentially transforming how financial organizations collectively combat fraud and other financial crimes. The weighted aggregation scheme developed to address non-IID data distributions offers a generalizable solution for federated learning applications across heterogeneous financial institutions.

The adaptive drift detection module introduces a necessary self-correcting mechanism to fraud detection systems, which have traditionally suffered from performance decay as fraudsters adapt their techniques. By continuously monitoring for concept drift and triggering appropriate model updates, our system maintains long-term effectiveness without manual intervention—a critical capability given the rapid evolution of financial fraud schemes.

Several limitations of this research suggest directions for future work. Our evaluation relied on synthetic data, which, while carefully designed to simulate real-world patterns, cannot fully capture the complexity of actual financial statements. Valida-

tion with real financial data from cooperating institutions would strengthen the findings, though such data remains difficult to obtain due to privacy concerns. The quantum-inspired optimization currently operates through classical simulation rather than actual quantum hardware; implementation on emerging quantum annealers could potentially yield further improvements. Additionally, the federated learning framework assumes participating institutions have aligned incentives for collaboration; incentive mechanisms for cross-institutional cooperation represent an important area for further research.

This work contributes to multiple research domains simultaneously. For financial technology, it demonstrates how emerging computational paradigms can address longstanding challenges in fraud detection. For machine learning, it shows how federated architectures can enable effective collaboration in privacy-sensitive domains. For quantum computing applications, it provides a practical use case for quantum-inspired algorithms in business analytics. And for forensic accounting, it offers new tools for detecting increasingly sophisticated financial statement manipulations.

The broader implications extend beyond technical contributions to regulatory and operational considerations. As financial systems become increasingly digital and interconnected, approaches that balance detection effectiveness with privacy preservation will become essential. Our methodology offers a pathway toward more collaborative, adaptive, and sophisticated fraud detection capabilities that can evolve alongside both financial innovation and fraudulent adaptation. Future research should explore applications of similar hybrid approaches to related financial surveillance tasks, such as money laundering detection, insider trading identification, and financial risk assessment, where similar constraints around data privacy and pattern evolution exist.

References

Ahmad, H. S. (2021). *Forensic accounting and information systems auditing: A coordinated approach to fraud investigation in banks*. University of Missouri Kansas City.

Khan, H., Jones, E., & Miller, S. (2021). Federated learning for privacy-preserving

autism research across institutions: Enabling collaborative AI without compromising patient data security. Park University.

Khan, H., Davis, W., & Garcia, I. (2021). Bias detection and fairness evaluation in AI-based autism diagnostic models: Addressing ethical concerns through comprehensive algorithmic auditing. University of Washington.

Bao, Y., Ke, B., Li, B., Yu, Y. J., & Zhang, J. (2020). Detecting accounting fraud in publicly traded US firms using a machine learning approach. *Journal of Accounting Research*, 58(1), 199-235.

Cecchini, M., Aytug, H., Koehler, G. J., & Pathak, P. (2010). Detecting management fraud in public companies. *Management Science*, 56(7), 1146-1160.

Perols, J. (2011). Financial statement fraud detection: An analysis of statistical and machine learning algorithms. *Auditing: A Journal of Practice & Theory*, 30(2), 19-50.

Kotsiantis, S., Koumanakos, E., Tzelepis, D., & Tampakas, V. (2006). Forecasting fraudulent financial statements using data mining. *International Journal of Computational Intelligence*, 3(2), 104-110.

Kirkos, E., Spathis, C., & Manolopoulos, Y. (2007). Data mining techniques for the detection of fraudulent financial statements. *Expert Systems with Applications*, 32(4), 995-1003.

Ngai, E. W., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. *Decision Support Systems*, 50(3), 559-569.

West, J., & Bhattacharya, M. (2016). Intelligent financial fraud detection: A comprehensive review. *Computers & Security*, 57, 47-66.