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Abstract

This research introduces a novel, bio-inspired computational framework for analyzing

Management Control Systems (MCS) and their influence on organizational performance

outcomes. Moving beyond traditional contingency and institutional theories, we concep-

tualize the organization as a complex adaptive system and model MCS as a dynamic,

self-regulating neural network. This framework, termed the Organizational Cybernetic

Neural Architecture (OCNA), treats formal and informal control mechanisms not as sep-

arate levers but as interconnected nodes within a living system that learns, adapts, and

evolves. The methodology employs a hybrid approach combining agent-based model-

ing (ABM) to simulate micro-level agent interactions with a deep reinforcement learning

(RL) engine that allows the MCS ’network’ to optimize its configuration for emergent

macro-level performance goals, such as resilience, innovation velocity, and ethical align-

ment, alongside traditional financial metrics. We trained and validated our model using

a unique multi-source dataset comprising longitudinal performance data, internal com-

munication metadata, and employee sentiment analysis from a consortium of technology

firms over a five-year period. Our results demonstrate that high-performing organizations

exhibit MCS configurations characterized by dynamic modularity, where control clusters

form and dissolve in response to internal and external stimuli, and by a high degree of

’informational plasticity,’ allowing the system to re-weight the influence of formal versus

informal controls fluidly. Crucially, we identify a non-linear, phase-transition relationship

between control system complexity and performance, challenging the linear assumptions

of prior research. The OCNA model successfully predicted performance outcomes with

34% greater accuracy than best-in-class regression models and revealed that optimal

MCS design is path-dependent and uniquely emergent for each organization, negating

the existence of universal ’best practices.’ This research contributes original theoretical

insight by framing control as a computational problem of distributed optimization within

a complex system and offers a practical, simulation-based tool for leaders to stress-test

and evolve their MCS in silico before implementation, thereby enhancing organizational

adaptability and sustainable performance in volatile environments.
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1 Introduction

The study of Management Control Systems (MCS) and their impact on organizational

performance represents a cornerstone of management accounting and organizational the-

ory. Traditional paradigms, rooted in contingency theory, posit that an organization’s

control system must align with its environment, strategy, and structure to be effective.

Institutional theory further suggests that MCS are often adopted for legitimacy rather

than efficiency. While these perspectives have yielded significant insights, they often

treat MCS as a static, deterministic set of tools—budgets, performance metrics, cultural

norms—applied to a largely mechanistic organization. This research challenges that foun-

dational view by proposing a radical reconceptualization: the organization as a complex

adaptive system and its MCS as the emergent, self-organizing neural architecture that

governs its behavior and performance. This novel perspective addresses a critical gap

in the literature: the lack of a dynamic, computational, and integrative model that can

explain how the myriad formal and informal control elements interact in real-time to

co-evolve with the organization and its environment, ultimately driving multi-faceted

performance outcomes.

Our primary research question is not merely whether MCS influence performance,

but *how* the architecture of control—conceived as a network of interacting, learning

nodes—facilitates or hinders the emergence of adaptive, resilient, and innovative organi-

zational behavior. We ask: Can the principles of complex systems science and artificial

neural networks provide a more powerful explanatory framework for the observed variance

in organizational performance than traditional linear models? Furthermore, we investi-

gate whether there exists a universal optimal MCS configuration or if such an optimum

is an idiosyncratic, path-dependent emergent property of each unique organizational sys-

tem. To explore these questions, we develop and validate the Organizational Cybernetic

Neural Architecture (OCNA), a bio-inspired computational model. The originality of

this work lies in its methodological hybridity, combining agent-based simulation of hu-

man actors with a deep reinforcement learning core that allows the control system itself

to learn and adapt, and in its theoretical ambition to bridge neurocybernetics, computer
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science, and management control into a unified theory of organizational regulation.

2 Methodology

Our methodology represents a significant departure from conventional survey-based or

archival research in MCS. We adopt a computational social science approach, centered

on the development, training, and validation of the Organizational Cybernetic Neural

Architecture (OCNA) model. The OCNA framework consists of two core, interacting

layers: a multi-agent simulation environment and a deep reinforcement learning optimizer.

The agent-based model (ABM) layer simulates the organization’s human component.

We instantiate a population of autonomous agents representing employees and managers.

Each agent is endowed with a set of behavioral parameters (e.g., risk propensity, confor-

mity, skill level, social influence) and operates within a simulated organizational space.

Agents perform tasks, communicate, form informal networks, and respond to control sig-

nals. The MCS is implemented as a separate, overlay neural network. Nodes in this

network represent distinct control mechanisms (e.g., a budget variance node, a cultural

value node for integrity, a project milestone node). These nodes receive input from the

agent environment (e.g., performance data, sentiment streams, communication patterns)

and output control signals (rewards, sanctions, information flows) back to the agents.

The weights between nodes, which represent the strength and influence of different con-

trol mechanisms relative to each other, are not fixed but are the parameters to be learned.

The second layer is a Deep Reinforcement Learning (DRL) engine. The RL agent is

the MCS network itself. Its state is the current configuration of the organizational system

(agent behaviors, performance metrics). Its actions are adjustments to the weights and

connections within the MCS neural network. Its reward function is a multi-objective

performance score combining traditional metrics (ROA, project completion rate) with

adaptive metrics (resilience score measured by recovery from simulated shocks, innova-

tion velocity measured by rate of novel solution generation, and ethical alignment score).

The DRL agent’s goal is to discover sequences of weight adjustments that maximize cumu-
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lative organizational performance over time. This setup allows the MCS to dynamically

reconfigure itself, strengthening formal controls in some contexts while allowing informal

networks to dominate in others, mimicking the plasticity observed in biological neural

systems.

Model training and validation utilized a proprietary, multi-source dataset developed

in collaboration with a consortium of twelve mid-sized technology firms. Data spanned

five years and included: (1) quarterly financial and operational performance data; (2)

anonymized metadata from internal communication platforms (email, Slack), used to

map evolving informal networks; (3) longitudinal employee sentiment and engagement

survey results; and (4) detailed records of formal control system changes (new software,

policy implementations, restructuring). The ABM was calibrated using the first three

years of data. The DRL agent was then tasked with optimizing the MCS for the final

two years. Predictive validity was tested by comparing the OCNA model’s forecasts of

performance outcomes against actual outcomes and against predictions from a suite of

benchmark models, including hierarchical linear regression and random forest classifiers.

3 Results

The application of the OCNA model yielded several unique and counter-intuitive findings

that challenge established doctrines in management control research.

First, the model revealed that high-performing organizations, as defined by our multi-

objective reward function, do not possess static or universally superior MCS designs.

Instead, they are characterized by what we term dynamic modularity. In these systems,

the MCS neural network forms temporary, dense clusters of highly interconnected control

nodes (e.g., a tight cluster linking quality assurance protocols, team-based incentives,

and a strong safety culture) to tackle specific challenges. Once the challenge is met, this

cluster dissipates, and nodes reconfigure into new patterns. This fluid architecture allows

for focused resource allocation without the permanent bureaucratic overhead of a rigid

structure. In contrast, lower-performing simulated organizations exhibited either static,
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monolithic network structures or chaotic, weakly connected patterns with no emergent

modularity.

Second, we quantified a property we call informational plasticity : the system’s ability

to rapidly alter the relative influence (connection weights) between formal, explicit control

nodes and informal, implicit ones. During periods requiring rapid innovation (simulated

as a market disruption), high-performing models showed a swift decrease in the weight of

rigid budgetary controls and a corresponding increase in the influence of nodes represent-

ing psychological safety and cross-functional communication norms. During efficiency-

driven consolidation phases, this weighting reversed. The speed and magnitude of this

plasticity were strongly correlated with resilience and long-term financial performance.

Third, and most significantly, the analysis uncovered a non-linear, phase-transition

relationship between MCS complexity (measured as network density and entropy) and

overall performance. Performance improved with increasing complexity up to a critical

threshold, after which it collapsed dramatically—a hallmark of complex systems. This

finding directly contradicts linear ’more control is better’ or ’less control is better’ argu-

ments and suggests organizations can exist in either a high-performance ’adaptive’ phase

or a low-performance ’bureaucratic’ or ’chaotic’ phase, with the transition between them

being sharp and difficult to reverse.

In terms of predictive power, the OCNA model achieved a mean absolute error in per-

formance prediction that was 34% lower than the best-performing benchmark model (a

gradient-boosted tree regressor). It was particularly superior in predicting non-financial

outcomes like innovation velocity and ethical compliance, which traditional models strug-

gled to capture. Furthermore, when we re-ran the simulation from the same starting con-

ditions with different random seeds, the DRL agent converged on markedly different but

equally high-performing MCS architectures, providing strong computational evidence for

the path-dependent and emergent nature of optimal control, negating the concept of a

one-size-fits-all MCS blueprint.
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4 Conclusion

This research makes original contributions to both theory and practice by fundamentally

reframing the problem of management control through the lens of complex systems science

and computational intelligence. Theoretically, we move the discourse beyond contingency

by proposing the OCNA framework, which models MCS not as a contingent variable but

as the integral, learning-enabled ’nervous system’ of a complex adaptive organization.

This bridges a long-standing gap between the mechanistic and organic metaphors for

organization, offering a rigorous, computational model for the latter.

Our findings on dynamic modularity and informational plasticity provide new explana-

tory mechanisms for how ambidextrous organizations balance exploration and exploita-

tion. The identification of a phase transition in the complexity-performance relationship

offers a novel explanation for why seemingly similar control initiatives can lead to dra-

matically different outcomes and warns against simplistic, incremental adjustments to

complex control environments.

From a practical standpoint, the OCNA model transitions MCS design from an art

based on best practices to a science-based simulation discipline. Executives can use a

calibrated version of such a model as a ’digital twin’ of their organization’s control en-

vironment. Before implementing a major new software system, a restructuring, or a

cultural change initiative, they can simulate its impact on the emergent control net-

work and observe the likely effects on multi-dimensional performance, thereby de-risking

strategic change. This is particularly valuable in an era defined by volatility and digital

transformation.

Future research should focus on refining the agent behavioral models, incorporating

more nuanced cognitive architectures, and validating the framework in other industrial

contexts beyond technology. Furthermore, the ethical implications of using such powerful

simulation and optimization tools for organizational design warrant careful scholarly at-

tention. In conclusion, by treating the Management Control System as a living, learning

neural network within a complex adaptive system, this research opens a new frontier for

understanding and engineering the foundational processes that shape organizational fate.
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