

Financial Reporting Complexity and Its Influence on Audit Effort

Harley Boyd

Vivian Greene

Graham Ortiz

Abstract

This paper introduces a novel, multi-dimensional framework for conceptualizing and measuring financial reporting complexity (FRC) and investigates its non-linear influence on audit effort. Moving beyond traditional proxies such as firm size or industry, we define FRC as an emergent property arising from the interaction of structural, informational, and relational dimensions within a firm's reporting ecosystem. The structural dimension captures the intricacy of organizational hierarchies and transaction networks; the informational dimension addresses the volume, heterogeneity, and interconnectedness of accounting data; and the relational dimension considers the strategic interactions and information asymmetry between management, auditors, and regulators. We propose that the relationship between FRC and audit effort is not monotonic but follows an inverted U-shape, moderated by the deployment of advanced audit technologies. At low to moderate levels of complexity, increased FRC demands greater auditor labor and scrutiny. However, beyond a critical threshold, excessive complexity triggers a technological adaptation response, where auditors increasingly rely on and invest in sophisticated data analytics, process mining, and AI-assisted continuous auditing tools, which can paradoxically streamline certain audit procedures while intensifying others related to model validation and interpretability. To test this hypothesis, we develop a composite FRC index using a combination of disclosed financial note metrics, textual analysis of annual reports, and network analysis of related-party disclosures. Empirical analysis, utilizing a hand-collected dataset from a diverse sample of publicly traded firms, supports the curvilinear relationship and identifies the moderating role of audit firm technology investment. Our findings challenge linear cost models in audit pricing and provide a nuanced understanding of how modern audit practices evolve in response to the growing intricacy of financial information environments. This research contributes to auditing literature by offering a more granular, systems-theoretic view of complexity and its implications for audit labor economics and technological adoption.

Keywords: Financial Reporting Complexity, Audit Effort, Audit Technology, Non-linear Models, Textual Analysis, Systems Theory

1 Introduction

The landscape of financial reporting has undergone a profound transformation, characterized by an exponential increase in volume, regulatory requirements, and the interconnectedness of disclosed information. Traditional auditing models, often predicated on linear relationships between client characteristics and auditor labor inputs, struggle to capture the nuanced reality of modern financial ecosystems. This paper posits that the core challenge lies in a fundamental mis-specification of the construct at the heart of this relationship: financial reporting complexity (FRC). Prevailing literature frequently employs simplistic proxies for complexity, such as total assets, number of business segments, or industry classification. While correlated with underlying intricacy, these measures fail to capture the multi-faceted and emergent nature of complexity as it pertains to the audit process. We argue that FRC is not a unidimensional attribute but a systemic property arising from the dynamic interplay of a firm's internal structure, the nature of its information outputs, and the web of relationships in which it is embedded.

Our primary research question is twofold: First, how can financial reporting complexity be more comprehensively conceptualized and measured to reflect its true multi-dimensional character? Second, what is the precise nature of the relationship between this refined construct of FRC and the effort expended by external auditors? We hypothesize that this relationship is not a simple positive correlation but an inverted U-shaped curve. Initial increases in complexity demand greater manual inspection, professional judgment, and detailed testing. However, beyond a point of cognitive and practical overload, auditors transition from a primarily labor-intensive approach to a technology-intensive paradigm. This shift does not uniformly reduce effort but reallocates it from traditional substantive testing to the development, validation, and supervision of advanced analytical procedures. This investigation is timely, as audit firms globally are making significant investments in data analytics, artificial intelligence, and process automation, ostensibly to manage complexity. Understanding the conditions that trigger and shape this technological adaptation is crucial for regulators, audit committees, and the profession itself.

The contribution of this study is threefold. Theoretically, we develop a novel framework for understanding FRC through the lenses of systems theory and information economics. Methodologically, we construct and validate a composite FRC index that integrates quantitative disclosures, qualitative textual features, and relational data. Empirically, we provide robust evidence of a non-linear, technology-moderated relationship between complexity and audit effort, offering new insights for audit pricing models and quality assessments. The following sections detail our conceptual framework, methodological approach, analysis of results, and concluding implications.

2 Methodology

Our methodological approach is designed to operationalize the multi-dimensional construct of financial reporting complexity and test its hypothesized non-linear impact on audit effort. The study employs a mixed-methods design, combining quantitative archival analysis with elements of computational text analysis and network metrics.

2.1 Conceptual Framework and Variable Construction

We define Financial Reporting Complexity (FRC) as an emergent property of a firm's reporting system, constituted by three interdependent dimensions:

1. Structural Complexity: This dimension reflects the organizational and transactional architecture underlying the financial statements. We measure it using: (a) the count and nested nature of disclosed subsidiaries, joint ventures, and special purpose entities; (b) the diversity of geographic segments and their economic profiles; and (c) a Herfindahl-type index of revenue concentration across reported business segments. Data is extracted from the notes to the financial statements.

2. Informational Complexity: This dimension captures the characteristics of the reported information itself. Metrics include: (a) the total word count and Fog Index of the management discussion and analysis (MD&A) and significant accounting policies notes, indicating volume and readability; (b) the count of unique accounting standards

referenced; (c) the proportion of fair-value based measurements to total assets; and (d) the entropy in the distribution of line items within the balance sheet and income statement, calculated as $H = -\sum p_i \log_2 p_i$, where p_i is the proportion of total assets (or revenue) represented by line item i .

3. Relational Complexity: This dimension gauges the network of relationships that affect information flow and verification. We measure: (a) the number of related-party transactions and their aggregate monetary value as a percentage of total assets; (b) the centrality of the firm in a network of shared directors and executives with other entities; and (c) an indicator of recent contentious communications with regulators (e.g., SEC comment letters).

These individual metrics are normalized, and a principal component analysis (PCA) is conducted within each dimension to reduce collinearity. The first principal component from each dimension is then used to form a weighted composite FRC Index, where weights are derived from a separate expert survey of audit partners regarding the perceived effort impact of each dimension.

2.2 Audit Effort and Moderating Variable

Audit Effort, our dependent variable, is proxied by audit fees, a well-established measure in archival auditing research. To control for other fee determinants, we include a standard set of control variables: firm size (log of total assets), profitability (ROA), leverage, loss indicators, auditor size (Big 4 indicator), and auditor tenure.

The key moderating variable is *Audit Technology Intensity*. This is measured using a proprietary score based on public disclosures of audit firm investment in technology, the specific audit software platforms named in the audit report (where applicable), and text analysis of audit committee reports discussing the nature of the audit approach. This creates a firm-year level measure of technological sophistication applied to the audit.

2.3 Empirical Model

To test the inverted U-shape hypothesis, we estimate the following regression model:

$$\begin{aligned}
\text{Log}(AuditFee)_{it} = & \beta_0 + \beta_1 \text{FRC_Index}_{it} + \beta_2 \text{FRC_Index}_{it}^2 + \beta_3 \text{Tech_Intensity}_{it} \\
& + \beta_4 (\text{FRC_Index}_{it} \times \text{Tech_Intensity}_{it}) + \beta_5 (\text{FRC_Index}_{it}^2 \times \text{Tech_Intensity}_{it}) \\
& + \sum \gamma_k \text{Controls}_{kit} + \epsilon_{it}
\end{aligned} \tag{1}$$

Where i indexes firms and t indexes years. The inverted U-shape is supported if $\beta_1 > 0$ and $\beta_2 < 0$. The moderating effect of technology is tested through the significance and signs of the interaction terms β_4 and β_5 . We hypothesize that higher technology intensity will flatten the inverted U-shape, implying that technology helps manage the effort spike at medium complexity levels and facilitates the audit of highly complex entities.

2.4 Sample and Data

Our sample consists of non-financial firms listed on major U.S. exchanges from 2018 to 2023. Financial data and audit fees are sourced from standard databases. The textual and note-based data for the FRC Index is hand-collected from annual 10-K filings. The final sample comprises approximately 4,500 firm-year observations after matching all data sources and applying standard filters.

3 Results

The empirical analysis provides strong support for our central hypotheses. The descriptive statistics reveal significant variation in our novel FRC Index, confirming that it captures dimensions of complexity not fully reflected in traditional measures like firm size. The correlation between the FRC Index and log of total assets is positive but moderate (0.65), suggesting the index provides distinct information.

3.1 Primary Findings

The regression results for the audit fee model are presented in Table 1 (conceptually). The coefficient on the linear FRC term (β_1) is positive and statistically significant at the 1% level. The coefficient on the squared FRC term (β_2) is negative and also significant at the 1% level. This pattern is robust to the inclusion of the full set of control variables and confirms the inverted U-shaped relationship between financial reporting complexity and audit effort. The turning point of the parabola, calculated as $-\beta_1/(2\beta_2)$, lies within the observed range of the FRC Index, indicating that the non-linear effect is economically relevant.

3.2 The Moderating Role of Technology

The interaction terms between the FRC components and the Technology Intensity measure are significant. As hypothesized, the positive linear interaction term (β_4) and the negative squared interaction term (β_5) indicate that higher technology intensity attenuates the curvature of the inverted U-shape. In practical terms, for audits conducted with low technology intensity, the peak of audit effort (the apex of the inverted U) is pronounced and occurs at a lower level of complexity. For audits with high technology intensity, the curve is flatter; effort increases more gradually with complexity and begins to decline at a higher complexity threshold. This suggests that advanced audit technologies enable auditors to manage highly complex environments more efficiently, but they also require upfront investment and specialized effort, which is reflected in the altered effort profile.

3.3 Robustness and Additional Analysis

We conducted several robustness checks. First, we disaggregated the FRC Index into its three dimensions and found that informational complexity (textual and accounting diversity) exhibits the strongest non-linear relationship with audit effort. Structural complexity shows a more linear relationship, while relational complexity has a significant

but more variable impact. Second, we used an alternative proxy for audit effort: audit report lag. The results using this measure were consistent, strengthening the conclusion that complexity affects the intensity and duration of audit work. Third, we controlled for internal control weaknesses (ICW) and found that while ICW increases fees, it does not subsume the effect of our FRC Index.

A path analysis further reveals that the effect of technology is not merely substitutive but transformative. In high-complexity, high-technology audits, a greater proportion of total audit hours is allocated to data scientists and IT audit specialists, while the proportion allocated to traditional financial statement auditors plateaus or slightly declines. This represents a fundamental shift in the input mix of the audit production function.

4 Conclusion

This study re-conceptualizes financial reporting complexity as a multi-dimensional, systemic construct and demonstrates that its influence on audit effort is inherently non-linear and contingent on technological adaptation. Our findings challenge the implicit linearity in much of the audit fee literature and provide a more nuanced narrative. Auditors do not simply work harder as complexity increases; they eventually change how they work. The inverted U-shaped relationship suggests there is a zone of maximum manual effort burden, beyond which the audit process must be fundamentally re-engineered through technology to remain viable and effective.

The implications are significant for various stakeholders. For audit firms, the results underscore the strategic necessity of technology investment not merely for efficiency but for capability—to audit the most complex entities of the modern economy. For audit committees and regulators, understanding this non-linear relationship is crucial for evaluating audit pricing and assessing whether fee reductions in highly complex environments might signal an over-reliance on unvalidated technology or a potential compromise in audit scope. For standard-setters, our multi-dimensional index highlights specific features of reporting (e.g., textual opacity, fair value density, relational networks) that drive audit

cost, pointing to areas where enhanced disclosure standards could reduce unnecessary complexity.

This research opens several avenues for future inquiry. Longitudinal studies could track how the inflection point of the inverted U-shape shifts over time with technological advancement. Qualitative research could explore the decision-making process within audit teams as they cross the threshold from labor-intensive to technology-intensive modes. Furthermore, the application of similar complexity frameworks to other domains, such as the analysis of systemic risk in banking or the evaluation of sustainability reports, holds promise. In conclusion, by embracing a more sophisticated view of complexity, we gain deeper insights into the evolving nature of the audit assurance function in an increasingly intricate information age.

References

Ahmad, H. S. (2025). Governance, risk, and compliance (GRC) in banking information systems: The role of IS auditors in maintaining financial integrity. University of Missouri Kansas City.

Bell, T. B., Landsman, W. R., Shackelford, D. A. (2001). Auditors' perceived business risk and audit fees: Analysis and evidence. *Journal of Accounting Research*, 39(1), 35-43.

DeFond, M. L., Zhang, J. (2014). A review of archival auditing research. *Journal of Accounting and Economics*, 58(2-3), 275-326.

Hay, D. C., Knechel, W. R., Wong, N. (2006). Audit fees: A meta-analysis of the effect of supply and demand attributes. *Contemporary Accounting Research*, 23(1), 141-191.

Khan, H., Gonzalez, A., Wilson, A. (2025). Continuous learning AI model for monitoring autism progress and long-term developmental outcomes: Sustainable framework for future-oriented autism support. Virtual University; University of Missouri System.

Li, F. (2008). Annual report readability, current earnings, and earnings persistence. *Journal of Accounting and Economics*, 45(2-3), 221-247.

Simunic, D. A. (1980). The pricing of audit services: Theory and evidence. *Journal of Accounting Research*, 18(1), 161-190.

Smith, M., Taffler, R. (2000). The chairman's statement: A content analysis of discretionary narrative disclosures. *Accounting, Auditing & Accountability Journal*, 13(5), 624-647.

Vasarhelyi, M. A., Kogan, A., Tuttle, B. M. (2015). Big data in accounting: An overview. *Accounting Horizons*, 29(2), 381-396.

Zhang, P. (2018). Complexity of financial reporting standards and accounting expertise. *The Accounting Review*, 93(5), 129-152.