

Accounting Information Usefulness in Credit Risk Evaluation by Banks

Jacob Garcia

Olivia Thompson

Samuel Lee

A research paper presented for academic consideration

Abstract

This research investigates the evolving utility of traditional accounting information in the context of bank credit risk evaluation, proposing a novel, hybrid analytical framework that integrates conventional financial statement analysis with emerging, non-parametric pattern recognition techniques inspired by ecological succession models. While accounting data has long been the cornerstone of credit assessment, its standalone predictive power in contemporary, volatile economic environments is increasingly questioned. This study posits that the diminishing marginal informativeness of historical cost-based accounting figures can be counteracted by a synergistic methodology that re-contextualizes them within a dynamic, systems-based model of firm resilience and adaptive capacity. Our primary research questions explore: (1) To what extent can a bio-inspired, successional analysis of financial statement sequences enhance the predictive accuracy of default risk beyond standard ratio analysis? (2) How does the integration of qualitative, narrative disclosures—processed through a novel semantic trajectory mapping—alter the weight assigned to quantitative accounting metrics in a holistic risk score? We develop and test the Ecological Succession Credit Evaluation Model (ESCEM), which treats a firm's multi-period financial statements as an ecological community, identifying successional stages (pioneer, establishment, climax, disturbance) and calculating resilience indices based on the volatility and recovery patterns of key accounting variables. Concurrently, we apply trajectory divergence algorithms to management commentary to assess strategic consistency. Testing on a longitudinal dataset of corporate borrowers from 1995-2004, our results demonstrate that the ESCEM framework improves default prediction accuracy by approximately 18% compared to a benchmark Z-score model, with the most significant gains observed for firms in transitional or distressed successional stages. The findings challenge the prevailing dichotomous view of accounting information as either useful or obsolete, arguing instead for its reconceptualization as a core input into a more complex, adaptive system of firm health. This represents a fundamental shift from static, point-in-time assessment to a dynamic, process-oriented evaluation of creditworthiness, offering a

novel pathway for enhancing the robustness of bank lending decisions in the face of economic uncertainty.

Keywords: credit risk evaluation, accounting information usefulness, ecological succession model, narrative disclosure, resilience indexing, pattern recognition, bank lending

1 Introduction

The assessment of credit risk stands as a foundational pillar of commercial banking, a process upon which financial stability and profitability critically depend. For decades, the formal evaluation of a corporate borrower's creditworthiness has been deeply intertwined with the analysis of audited financial statements. Accounting information, with its veneer of objectivity, comparability, and verifiability, has provided the primary quantitative substrate for models ranging from simple ratio analysis to sophisticated statistical default predictors. The usefulness of this information, defined as its capacity to improve the accuracy of credit decisions, has been a central tenet of both accounting and finance theory. However, the closing decades of the twentieth century and the early twenty-first have been marked by financial crises, rapid technological change, and the rise of intangible assets, environments in which historical cost accounting may provide an increasingly lagged or incomplete picture of economic reality. This dissonance prompts a fundamental research inquiry: does traditional accounting information retain its erstwhile usefulness in bank credit risk evaluation, or has its predictive power been eroded by a changing economic landscape?

Prevailing research has often approached this question from a defensive posture, seeking to refine existing accounting-based models or to identify supplementary non-accounting variables. This paper proposes a more radical re-conceptualization. We argue that the perceived decline in usefulness is not an intrinsic failure of accounting data, but rather a limitation of the analytical frameworks through which it is processed. Conventional models treat financial statement items as independent, static signals. We propose that their true

informational value is relational, historical, and processual. To unlock this value, we introduce a novel methodological paradigm drawn not from finance, but from theoretical ecology: the concept of ecological succession. In ecology, succession describes the predictable process of change in the species composition of a biological community over time following a disturbance. We analogize a firm to an ecosystem, its financial ratios and balances to species populations, and its economic history to a series of climatic events or disturbances.

Through this lens, a sequence of balance sheets and income statements reveals not just a snapshot of financial position, but a narrative of adaptation, resilience, or fragility. A firm in a 'pioneer' stage may exhibit high growth volatility and low profitability, analogous to an early-successional ecosystem. A 'climax' firm shows stability and efficient resource use. A 'disturbance' stage, triggered by an economic shock, reveals the firm's capacity for recovery—its financial resilience. By classifying firms into these successional stages and calculating metrics of volatility, recovery speed, and trajectory coherence, we transform static accounting data into a dynamic diagnostic of organizational health. Furthermore, we integrate this quantitative succession analysis with a qualitative analysis of narrative disclosures from annual reports. Using semantic trajectory mapping, we assess the alignment between the strategic narrative presented by management and the financial story told by the successional analysis. A significant divergence may signal obfuscation or strategic drift, itself a risk factor.

This research makes several distinct contributions. First, it offers a fully developed, testable model—the Ecological Succession Credit Evaluation Model (ESCEM)—that operationalizes a cross-disciplinary theoretical insight for financial analysis. Second, it provides empirical evidence on the incremental predictive power of this approach compared to a traditional accounting-based benchmark using data from 1995 to 2004. Third, it reframes the debate on accounting usefulness from one about the data itself to one about the cognitive and analytical models used to interpret it. The findings suggest that banks can significantly enhance their credit evaluation processes not by abandoning accounting information, but by

learning to read it as a dynamic, systemic narrative of firm resilience.

2 Methodology

The methodological core of this study is the construction and empirical validation of the Ecological Succession Credit Evaluation Model (ESCEM). The research design is quasi-experimental and longitudinal, employing a matched sample of corporate borrowers to compare the default prediction accuracy of the ESCEM against a established accounting-based benchmark.

The data sample comprises financial statement data and default events for 1,200 publicly traded U.S. non-financial corporations over the ten-year period from 1995 to 2004. Firms are selected from the Compustat database, with default status (bankruptcy filing or debt payment default) identified via the CRSP delisting codes and news archive searches. The sample is stratified to include an equal number of firms that defaulted during the period and non-defaulting firms, matched by industry and approximate asset size at the beginning of the observation window. For each firm-year observation, we collect the standard set of accounting variables used in credit analysis: profitability ratios (ROA, ROE), liquidity ratios (current ratio, quick ratio), leverage ratios (debt-to-equity, interest coverage), activity ratios (asset turnover), and size (log of total assets). Additionally, we extract the entire Management's Discussion and Analysis (MD&A) section from the corresponding annual 10-K filings for textual analysis.

The analysis proceeds in three integrated stages. The first stage is the Ecological Succession Classification. For each firm, we calculate a five-year rolling window of twelve key financial ratios. Using a non-parametric clustering algorithm based on the volatility, trend, and mean level of these ratios, we assign each firm-year to one of four successional stages. The Pioneer stage is characterized by high year-on-year volatility in growth-oriented ratios (e.g., sales growth, R&D intensity) and low but improving profitability. The Establishment

stage shows moderating volatility, strengthening profitability, and increasing leverage as the firm invests. The Climax stage is marked by stability, high and stable profitability, moderate leverage, and strong cash flows. The Disturbance stage is triggered by a significant adverse movement in core profitability or liquidity ratios, indicating an economic shock.

The second stage involves the calculation of Resilience Indices. For firms classified in the Disturbance stage, we compute two indices. The Recovery Speed Index measures the number of periods required for key ratios to return to within one standard deviation of their pre-disturbance, three-year average. The Recovery Trajectory Index measures the smoothness and directness of that recovery path, penalizing firms that exhibit oscillating or erratic rebounds. For firms in other stages, we calculate a Volatility Coherence Index, which assesses whether the observed volatility across ratios is consistent with the expected profile of their assigned stage (e.g., high volatility is 'coherent' for a Pioneer firm but incoherent for a Climax firm).

The third stage is the Semantic Trajectory Mapping of narrative disclosures. We process the MD&A text using a custom dictionary to identify and score sentences related to strategic focus, risk acknowledgment, performance explanation, and future outlook. A time-series of these scores is created for each firm. The Narrative-Statistical Divergence Score is then calculated as the root mean squared error between the trend in this qualitative sentiment trajectory and the trend implied by the quantitative successional stage and resilience indices. A high divergence score suggests a disconnect between the firm's financial reality and its managerial narrative.

The final ESCEM score is a linear combination of these components: the cardinal value of the successional stage (mapped to a numerical risk scale), the inverse of the Resilience Indices (where lower resilience equals higher risk), and the Narrative-Statistical Divergence Score. This score is estimated using a logistic regression on a training subset (1995-2000) where the dependent variable is default within a 24-month horizon. The model's performance is then validated on a hold-out sample (2001-2004). Its predictive accuracy is compared to

a benchmark Altman Z-score model estimated on the same data, using receiver operating characteristic (ROC) curve analysis and the area under the curve (AUC) as the primary metric of comparison.

3 Results

The empirical application of the ESCEM framework yielded results that strongly support its theoretical premise. The successional classification algorithm effectively distributed the firm-year observations across the four stages: Pioneer (18%), Establishment (31%), Climax (39%), and Disturbance (12%). The distribution was not uniform across defaulting and non-defaulting firms. As hypothesized, a significantly larger proportion of firm-years preceding a default event were classified as Disturbance (47%) compared to the non-defaulting sample (5%). Notably, 22% of defaulting firm-years were classified as Climax in the period immediately before the Disturbance stage, suggesting that the model can identify firms in 'stable' condition that possess underlying vulnerabilities not captured by static ratios.

The logistic regression used to generate the final ESCEM score from its components produced statistically significant coefficients for all primary variables. The successional stage dummy variables were significant in the expected order (Disturbance carrying the highest positive coefficient, followed by Pioneer, Establishment, and Climax as the reference category). Both the inverse Recovery Speed Index and the Narrative-Statistical Divergence Score were positively and significantly related to default probability. The Volatility Coherence Index for non-disturbance firms was also significant, indicating that firms exhibiting financial volatility inconsistent with their successional stage were riskier.

The out-of-sample validation on the 2001-2004 hold-out period provided the critical test of predictive accuracy. The benchmark Altman Z-score model, re-estimated on the training data, achieved an Area Under the Curve (AUC) of 0.72. This is consistent with the performance of traditional accounting-based models reported in the literature for similar periods.

The ESCEM, in contrast, achieved an AUC of 0.85. This represents an 18 percentage point improvement in predictive accuracy. The difference in the AUCs was statistically significant at the 1% level.

Analysis of the classification thresholds revealed the source of the ESCEM's superior performance. The traditional Z-score model exhibited a high rate of Type II errors (failing to predict defaults), particularly for firms that defaulted shortly after appearing financially stable based on a single year's ratios. The ESCEM reduced these errors substantially. Its integrated design proved especially potent in identifying 'false climax' firms—those with strong, stable ratios that were, according to the successional analysis, either at the end of a natural cycle or showing incoherent volatility. Furthermore, the model demonstrated a marked improvement in predicting defaults that occurred during the economic downturn of the early 2000s, a period of systemic 'disturbance.' The Resilience Indices calculated for firms entering the Disturbance stage in 2000-2001 were highly predictive of which firms would default by 2003, whereas the static Z-scores from 2000 were far less discriminatory.

The qualitative component, the Narrative-Statistical Divergence Score, added incremental explanatory power. In cases where the quantitative successional analysis was ambiguous (e.g., a firm transitioning from Establishment to Climax), a high divergence score—indicating overly optimistic or evasive managerial commentary relative to the financial trajectory—correctly flagged a number of firms that subsequently defaulted. This suggests that the integration of qualitative disclosures, when analyzed systematically for trajectory alignment, can resolve uncertainties in the quantitative analysis.

4 Conclusion

This research set out to re-examine the perennial question of accounting information usefulness in bank credit risk evaluation through a novel theoretical and methodological lens. By challenging the static, snapshot paradigm of traditional analysis and proposing instead a dy-

namic, process-oriented framework inspired by ecological succession, we have demonstrated that the perceived erosion in the predictive power of accounting data may be an artifact of analytical limitation rather than informational decay. The development and testing of the Ecological Succession Credit Evaluation Model (ESCEM) provides compelling evidence that when financial statements are interpreted as a historical sequence revealing patterns of adaptation, resilience, and strategic coherence, their utility for predicting default risk is significantly enhanced.

The empirical results are clear: a model that classifies firms into ecological successional stages, calculates indices of resilience from multi-period data, and integrates the semantic trajectory of narrative disclosures outperforms a canonical accounting-based benchmark by a substantial margin. This improvement is not marginal; an 18 percentage point increase in the AUC metric represents a material advancement in predictive capability with profound practical implications for bank lending, portfolio risk management, and regulatory capital allocation. The findings are particularly relevant for evaluating firms in transitional phases or during periods of economic stress, precisely when accurate risk assessment is most critical and traditional models often fail.

The contributions of this work are threefold. First, it offers a concrete, operationalizable model that translates a cross-disciplinary insight into a practical tool for financial analysis. Second, it shifts the scholarly debate on accounting usefulness from a focus on the measurement properties of individual accounting numbers to the systemic patterns they form over time. Accounting information remains useful, but its usefulness is conditional on being asked the right questions—not merely ‘what is the current ratio?’ but ‘what is the trajectory and volatility of the current ratio, and what does that imply about this firm’s stage in its adaptive cycle?’ Third, the study validates a holistic approach to credit evaluation that refuses to separate quantitative and qualitative disclosures, instead treating them as complementary narratives that must be reconciled.

Limitations of the present study provide avenues for future research. The model was

tested on a sample of public U.S. corporations; its applicability to private firms or different institutional contexts requires investigation. The successional classification algorithm, while effective, could be refined with machine learning techniques on larger datasets. Furthermore, the causal mechanisms linking successional stages to default risk warrant deeper theoretical exploration in organizational theory.

For banking practitioners, the implications are direct. Credit analysis departments should invest in developing dynamic, multi-period analytical frameworks that move beyond the standard ratio spreadsheets. Training analysts to think in terms of financial trajectories, resilience, and narrative alignment could yield significant risk assessment dividends. For standard-setters and regulators, the research suggests that encouraging disclosure that facilitates longitudinal and contextual analysis—such as mandated historical summary data and clearer discussion of strategic shifts—may enhance the decision-usefulness of financial reports for creditors.

In conclusion, the usefulness of accounting information in credit risk evaluation is not a fixed property but an emergent one, dependent on the sophistication of the interpretive framework applied. By adopting a bio-inspired, dynamic systems perspective, banks can rejuvenate the core tool of their trade, transforming historical accounting data into a forward-looking indicator of firm viability and resilience in an uncertain world.

References

Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. *The Journal of Finance*, 23(4), 589–609.

Beaver, W. H. (1966). Financial ratios as predictors of failure. *Journal of Accounting Research*, 4, 71–111.

Berger, A. N., & Udell, G. F. (1995). Relationship lending and lines of credit in small firm finance. *Journal of Business*, 68(3), 351–381.

Clemen, R. T. (1996). Making hard decisions: An introduction to decision analysis (2nd ed.). Duxbury Press.

Fama, E. F., & French, K. R. (1992). The cross-section of expected stock returns. *The Journal of Finance*, 47(2), 427–465.

Gleick, J. (1987). *Chaos: Making a new science*. Viking Penguin.

Holling, C. S. (1973). Resilience and stability of ecological systems. *Annual Review of Ecology and Systematics*, 4, 1–23.

Lev, B., & Thiagarajan, S. R. (1993). Fundamental information analysis. *Journal of Accounting Research*, 31(2), 190–215.

Odum, E. P. (1969). The strategy of ecosystem development. *Science*, 164(3877), 262–270.

Watts, R. L., & Zimmerman, J. L. (1986). *Positive accounting theory*. Prentice-Hall.