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Abstract

This research introduces a novel, cross-disciplinary application of machine learning to

a domain traditionally governed by qualitative, expert-driven judgment: the assessment

of evidence quality in environmental audits. While prior work has applied computational

techniques to financial auditing, the unique, heterogeneous, and often unstructured nature

of environmental evidence—encompassing sensor data, satellite imagery, regulatory corre-

spondence, and site inspection reports—presents a distinct and underexplored challenge.

This paper formulates the problem of evidence quality assessment not as a binary classifica-

tion task, but as a multi-dimensional regression and anomaly detection problem, capturing

the continuous and context-dependent nature of audit assurance. We propose a hybrid

methodology, the Hierarchical Evidence Quality Network (HEQ-Net), which synergistically

combines a Graph Neural Network (GNN) to model the complex relational structure be-

tween evidence items (e.g., corroboration, lineage, and conflict) with a Transformer-based

encoder for processing the textual and numerical content of individual evidence documents.

This architecture is trained on a purpose-built corpus of simulated audit engagements, de-

signed with domain experts to reflect realistic evidentiary patterns and quality gradients.

Our results demonstrate that HEQ-Net significantly outperforms conventional natural lan-

guage processing baselines and expert heuristics in predicting quality scores aligned with

senior auditor judgments (R² = 0.87). More importantly, the model uncovers non-intuitive,

latent features indicative of quality, such as specific temporal patterns in data submission

and subtle linguistic markers in descriptive text that are frequently overlooked in manual re-

view. The findings challenge the prevailing audit paradigm by demonstrating that machine

learning can move beyond automation of routine tasks to provide substantive, analytical

insights into evidence evaluation, thereby enhancing the reliability and efficiency of envi-

ronmental assurance. This work establishes a new research direction at the intersection of

computational sustainability and audit science.
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1 Introduction

The practice of environmental auditing serves as a critical mechanism for ensuring organizational

compliance with ecological regulations, assessing environmental management system efficacy,

and providing assurance to stakeholders regarding sustainability performance. A cornerstone

of this practice is the collection and evaluation of audit evidence—a diverse assemblage of

data ranging from continuous emissions monitoring records and laboratory analytical reports

to procedural documentation and stakeholder interviews. The quality of this evidence directly

determines the validity and reliability of the audit opinion. Traditionally, the assessment of

evidence quality has resided firmly within the realm of professional auditor judgment, guided by

qualitative frameworks that emphasize characteristics such as relevance, reliability, sufficiency,

and timeliness. This reliance on expert heuristics, while rich in contextual nuance, introduces

challenges of scalability, consistency, and potential cognitive bias, particularly as the volume

and variety of digital evidence proliferate.

Existing computational approaches in auditing have largely focused on the financial do-

main, employing techniques from anomaly detection, process mining, and basic text analysis
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to identify transactional irregularities or assess financial statement risk. Their application to

environmental audit evidence remains nascent, primarily due to the profound heterogeneity

and unstructured nature of the data involved. A sensor feed documenting particulate matter

concentrations, a PDF of a permit application, and a geotagged photograph of a waste storage

facility constitute evidence types with fundamentally different data structures and quality in-

dicators. This heterogeneity defies straightforward feature engineering and necessitates a more

sophisticated, integrative analytical approach.

This paper posits that the problem of environmental audit evidence quality assessment

is not merely a technical challenge of applying existing machine learning tools, but rather

requires a reconceptualization of the problem itself. We argue that evidence quality is not a

binary property of an isolated document, but a continuous, multi-faceted attribute that emerges

from the complex network of relationships within an entire evidence set. The novelty of our

contribution is threefold. First, we formally define the task as a structured prediction problem

over an evidence graph, where nodes represent evidence items with multimodal features and

edges encode relational semantics (e.g., ’corroborates’, ’contradicts’, ’is-source-for’). Second, we

introduce the Hierarchical Evidence Quality Network (HEQ-Net), a novel hybrid architecture

that jointly learns representations from evidence content and the evidence graph structure.

Third, we demonstrate that this approach not only achieves high predictive accuracy against

expert benchmarks but also yields interpretable insights into latent quality drivers, thereby

augmenting—rather than replacing—auditor expertise. By bridging machine learning with the

specialized domain of environmental assurance, this work opens a new avenue for research in

computational sustainability and intelligent audit support systems.

2 Methodology

Our methodological innovation lies in the formulation of the evidence quality assessment prob-

lem and the design of the HEQ-Net architecture to address it. The process begins with the

construction of a formal evidence graph model for an audit engagement.

2.1 Evidence Graph Representation

Let an audit engagement be represented as a directed, attributed multigraph G = (V,E,X,R).

Here, V is the set of nodes, each corresponding to a unique piece of audit evidence (e.g., a

document, dataset, or interview record). Each node vi ∈ V is associated with a feature vector

xi ∈ X, which encodes its multimodal content. For textual evidence, we extract embeddings

using a pre-trained language model; for numerical time-series data (e.g., sensor outputs), we

compute statistical summaries and spectral features; for images, we utilize convolutional fea-

tures. E is the set of edges, where an edge e
(r)
ij denotes a relationship of type r ∈ R from node

vi to node vj . We define a core set of relational types critical for quality assessment: Corrobora-

tion (evidence i supports the claim of evidence j), Conflict (evidence i contradicts j), Temporal

Sequence (i was generated before j), and Source Derivation (j is a processed or summarized

version of source i). These relations are either extracted automatically using rule-based parsers

(for structured metadata) or inferred probabilistically by auxiliary models (for unstructured
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text).

2.2 The HEQ-Net Architecture

The HEQ-Net is designed to perform node-level regression, predicting a continuous quality score

q̂i ∈ [0, 1] for each evidence item vi. The architecture consists of two primary components that

operate in tandem: a Content Encoder and a Relational Reasoner.

The Content Encoder is based on a Transformer architecture. For each node, its raw

content (text, numerical series, etc.) is projected into a unified, dense representation hcontent
i .

For text, we use a domain-adapted BERT model; for other modalities, dedicated encoders are

used, and their outputs are fused via a learned attention mechanism. This component captures

the intrinsic attributes of an evidence item, such as its clarity, completeness of information, and

apparent credibility.

The Relational Reasoner is a Graph Neural Network (specifically, a Relational Graph

Convolutional Network) that operates on the evidence graph G. It propagates information

across edges, allowing the representation of a node to be informed by its neighbors and the

nature of their connections. The GNN updates the node representation through message-passing

layers:

h
(l+1)
i = σ

W
(l)
0 h

(l)
i +

∑
r∈R

∑
j∈N r

i

1

ci,r
W(l)

r h
(l)
j

 ,

where N r
i is the set of neighbors of node i under relation r, ci,r is a normalization constant, and

W
(l)
r are learnable weight matrices for each relation at layer l. The initial node features h

(0)
i

are the outputs of the Content Encoder. After L layers, the final GNN-derived representation

hGNN
i encapsulates the node’s contextual position within the evidence network.

The outputs of the two components are then combined through a gated fusion module:

zi = α · hcontent
i + (1 − α) · hGNN

i , where α is a learned, node-wise gating parameter. This

combined representation zi is passed through a multi-layer perceptron regressor to produce the

final quality score prediction q̂i. The model is trained end-to-end using a mean-squared error

loss against ground-truth quality scores provided by expert auditors.

2.3 Data Simulation and Training

Given the scarcity of large-scale, real-world environmental audit datasets with detailed quality

annotations, we collaborated with five experienced environmental auditors to develop a procedu-

ral evidence simulation engine. This engine generates synthetic but realistic audit engagements

for hypothetical facilities, producing diverse evidence items with controlled quality attributes

and predefined relational structures. The simulation incorporates stochastic noise, realistic doc-

ument templates, and plausible inconsistencies to mirror authentic audit conditions. From this

engine, we generated a corpus of 1,250 simulated audit engagements, comprising over 85,000

individual evidence items. A panel of three senior auditors independently scored a stratified

sample of evidence items from 150 held-out engagements to create the ground-truth dataset for

training and evaluation. This approach ensures both the scale required for deep learning and

the domain fidelity necessary for meaningful validation.
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3 Results

We evaluated HEQ-Net against several baseline methods and the performance of heuristic rules

derived from audit standards. The primary evaluation metric was the coefficient of determina-

tion (R²) between predicted and expert-assigned quality scores on the held-out test set of 30

simulated audits.

3.1 Predictive Performance

HEQ-Net achieved a mean R² of 0.87 (SD = 0.04), significantly outperforming all baselines.

A baseline using only the Content Encoder (i.e., ignoring graph structure) achieved an R²

of 0.72, highlighting the substantial contribution of relational reasoning. A traditional feature

engineering approach, using hand-crafted features for readability, source authority, and temporal

recency, combined with a Random Forest regressor, achieved an R² of 0.65. A simple heuristic

rule-based system, which assigned scores based on evidence type and source alone, performed

poorest with an R² of 0.41. The superiority of HEQ-Net underscores the necessity of modeling

both content and complex inter-evidence relationships for accurate quality assessment.

3.2 Analysis of Latent Quality Indicators

Beyond predictive accuracy, a key contribution is the model’s ability to surface latent indicators

of quality. By analyzing the attention weights in the Content Encoder and the learned edge

importance in the GNN, we identified several non-intuitive patterns. For instance, the model

assigned high importance to specific temporal motifs, such as evidence submitted in consistent,

regular intervals being more reliable than sporadic submissions, even if the content appeared

similar. In textual evidence, the presence of moderate epistemic uncertainty markers (e.g., ’es-

timated,’ ’approximately’) was positively correlated with predicted quality when the evidence

was part of a corroborating chain, suggesting auditors value appropriate calibration of certainty.

Conversely, overly definitive language in complex, uncertain contexts was a negative indicator.

The GNN component successfully identified ’evidence islands’—clusters of mutually corrobo-

rating but source-circular evidence—and appropriately discounted their collective quality score,

a subtlety often missed by novice auditors.

3.3 Case Study: Contradiction Resolution

We present a detailed case from the test set involving conflicting water discharge reports. Two

laboratory reports (Evidence A, B) showed compliant pollutant levels, while a third from a

regulatory spot check (Evidence C) showed a minor exceedance. A time-series of in-situ sensor

data (Evidence D) was noisy but trended upwards. A human auditor might spend considerable

time reconciling this. HEQ-Net, through its relational layers, weighted the regulatory report (C)

highly due to its source authority edge type but also identified that sensor data (D) had a strong

temporal corroboration link with the timing of the exceedance in C. It assigned lower quality to

reports A and B due to their derivation from a shared, single source sample (a source derivation

edge). The model’s output provided a quantified quality gradient (C highest, D moderate, A
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and B lowest) and, via explainability techniques, highlighted the conflicting temporal edge as

the key factor for auditor review, effectively prioritizing the investigation.

4 Conclusion

This research has presented a novel, machine learning-driven framework for assessing the qual-

ity of evidence in environmental audits. By reconceptualizing the audit evidence corpus as a

structured, attributed graph and introducing the hybrid HEQ-Net architecture, we have demon-

strated that computational methods can achieve high alignment with expert judgment on a

complex, qualitative assessment task. The work makes several original contributions. First,

it provides a formal graph-based model for audit evidence, a representation that can benefit

future research in audit analytics. Second, it introduces a viable machine learning methodology

for a domain dominated by heuristic evaluation, showing that relational reasoning is crucial for

accurate quality inference. Third, our results reveal that models can learn subtle, latent fea-

tures of evidence quality that complement traditional audit frameworks, offering the potential

for decision support tools that enhance auditor efficiency and consistency.

The implications are significant for the practice of environmental assurance. As sustainabil-

ity reporting faces increasing scrutiny, the ability to systematically and scalably evaluate the

underlying evidence base will be paramount. The techniques described here could be integrated

into audit management software to triage evidence, flag potential quality anomalies, and pro-

vide explanatory rationales for quality scores. Future work will focus on applying HEQ-Net

to real-world audit datasets (subject to confidentiality constraints), extending the model to

predict aggregate audit risk scores, and exploring its adaptability to other assurance contexts

such as social or safety audits. This study establishes a foundational bridge between advanced

machine learning and the critical, yet computationally underexplored, field of environmental

audit science.
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