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Abstract

This research introduces a novel, hybrid machine learning framework designed to revo-
lutionize environmental cost accounting and sustainability performance measurement. Tra-
ditional approaches, often reliant on static models and manual data aggregation, fail to
capture the complex, non-linear interdependencies between operational activities, resource
flows, and environmental impacts. Our methodology diverges significantly by integrating an
ensemble of unsupervised and supervised learning techniques—specifically, a modified Self-
Organizing Map (SOM) for pattern discovery in resource consumption data, coupled with
a Gradient Boosting Machine (GBM) for predictive impact costing. This hybrid model is
uniquely applied to a continuous, multi-source data stream encompassing energy logs, supply
chain material transfers, and real-time emissions monitoring, a data integration challenge
seldom addressed in accounting literature. The core innovation lies in the framework’s abil-
ity to perform dynamic attribution of environmental costs to specific processes or products
without predefined allocation keys, learning cost drivers directly from the data topology. We
validate the framework using a three-year operational dataset from a multi-plant manufac-
turing consortium. The results demonstrate a 42% improvement in the accuracy of predicted
versus actual environmental compliance costs compared to standard activity-based costing
models. Furthermore, the SOM component identified previously unrecognized patterns of
synergistic waste generation between disparate production lines, leading to a proposed pro-
cess redesign estimated to reduce aggregate environmental costs by 18%. The model also
generated a novel sustainability performance index, weighted by learned material criticality,
which showed a stronger correlation with long-term financial performance than traditional
eco-efficiency metrics. This work provides a foundational shift from descriptive, lagging indi-
cator accounting to a prescriptive, learning-based system capable of adaptive sustainability
management, offering a new paradigm for integrating artificial intelligence into corporate

environmental governance.
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1 Introduction

The imperative for organizations to accurately account for environmental costs and measure
sustainability performance has intensified over the past decades, driven by regulatory pressures,
stakeholder demands, and the recognition of material financial risks associated with ecological
impacts. Conventional environmental cost accounting (ECA) systems, however, remain largely
anchored in methodological frameworks developed for traditional managerial accounting, such
as activity-based costing (ABC) or input-output analysis. These systems typically rely on
simplifying linear assumptions, static allocation bases, and periodic, aggregated data. Conse-
quently, they struggle to model the dynamic, interconnected, and often non-linear relationships
between operational variables—Ilike production volume, energy mix, and material purity—and
their resulting environmental externalities, such as carbon emissions, water pollution, or waste
generation. This gap between accounting practice and systemic reality leads to inaccurate cost
attribution, obscured cost drivers, and sustainability performance indicators that are reactive
rather than predictive.

This paper posits that machine learning (ML) offers a transformative pathway to overcome
these limitations. While the application of computational intelligence in finance and opera-
tions is well-established, its integration into the specific domain of environmental management
accounting is nascent and underexplored. Prior research has largely focused on using ML for dis-
crete tasks like forecasting energy consumption or classifying compliance documents. The novel
contribution of this work is the conception and validation of an integrated, hybrid ML frame-
work explicitly designed for the dual, interconnected objectives of environmental cost accounting
and sustainability performance measurement. The framework moves beyond mere prediction to
enable explanatory insight into cost structures and the discovery of latent performance drivers.
Our approach is unconventional in its rejection of predefined accounting models in favor of a
topology-learning system that constructs its own representation of the cost-environment nexus
from high-dimensional, temporal data. The central research questions addressed are: First, can
a hybrid unsupervised-supervised ML: model dynamically attribute diffuse environmental costs
to their operational sources with greater accuracy than standard allocation methods? Second,
can such a model identify previously unrecognized patterns of resource inefficiency and environ-
mental impact? Third, can the internal representations learned by the model form the basis of

a more robust and leading sustainability performance index?

2 Methodology

The proposed methodology is built upon a hybrid architecture that sequentially applies un-
supervised learning for pattern discovery and supervised learning for predictive costing. This
two-stage design is critical for addressing the complexity and partial labeling inherent in en-
vironmental cost data. The input data layer aggregates continuous feeds from three primary
sources: (1) process control systems capturing real-time energy (kWh), water (m?3), and raw ma-
terial consumption (kg) at the machine-level granularity; (2) supply chain management systems
logging material transfers, packaging data, and transportation manifests; and (3) environmental

management systems recording monitored emissions (CO2, NO,, particulates), effluent quality,



and waste generation logs. These heterogeneous streams are synchronized using a temporal
alignment algorithm and normalized to account for operational scale.

The first stage employs a modified Self-Organizing Map (SOM), a type of artificial neural
network used for dimensionality reduction and clustering. The standard SOM algorithm is
adapted with a conscience mechanism to prevent neuron underutilization and a temporal win-
dowing function to capture short-term dependencies in the data stream. The SOM is trained on
the unlabeled, multi-variate operational data (e.g., energy draw, solvent use, production rate).
Its objective is not to predict costs but to learn the topological structure of the operational
state space. Upon convergence, the SOM discretizes the continuous operational flow into a fi-
nite set of prototype vectors, or ”operational archetypes.” Each real-time data point is mapped
to its best-matching unit (BMU) on the SOM grid. Crucially, this mapping reveals clusters of
operational states that are similar in their resource consumption profiles, irrespective of their
formal departmental or product classification. This unsupervised stage autonomously identifies
recurring patterns and anomalies in the environmental footprint of operations.

The second stage utilizes a Gradient Boosting Machine (GBM), a powerful ensemble learning
technique, for supervised regression. The training target is the total recorded environmental
cost, which includes tangible costs (e.g., waste disposal fees, emissions taxes, water charges) and
estimated intangible costs (e.g., shadow prices for carbon, biodiversity impact scores derived
from lifecycle assessment databases). The key innovation is the feature set used for prediction.
Instead of using raw operational data or traditional accounting drivers (like machine hours),
the primary features are the coordinates of the data point’s BMU on the SOM grid and the
distance from the data point to that BMU. This transforms the problem: the GBM learns to
predict environmental cost based on an operational state’s position within the learned topology
of the SOM. Secondary features include product identifiers and external factors like ambient
temperature. The trained GBM model can then predict the environmental cost associated with
any current or hypothetical operational state by first mapping it to the SOM and then passing
the topological features to the GBM regressor. This allows for dynamic, state-dependent cost
attribution and ”what-if” scenario analysis for sustainability investment decisions.

Finally, the framework generates a novel Sustainability Performance Index (SPI). The index
is computed as a weighted function of the GBM’s predicted cost per unit of output and the
SOM’s quantization error (a measure of how atypical an operational state is). The weighting
for different cost categories (e.g., carbon, water, waste) is not fixed but is derived from the
GBM’s feature importance scores, reflecting the model’s learned criticality of each environmental
dimension to total cost variability. This data-driven weighting is a significant departure from
expert-opinion-based weighting used in composite indicators like the Global Reporting Initiative

standards.

3 Results

The hybrid ML framework was implemented and tested using a three-year dataset (2002-2004)
from a consortium of three mid-sized manufacturing plants producing specialized polymer com-

ponents. The dataset contained over 2.6 million time-stamped records across 42 operational



variables and the associated monthly environmental cost ledgers. The dataset was partitioned
chronologically, with the first two years used for training and the final year for out-of-sample
testing and validation.

The predictive performance of the GBM model, using the SOM-derived topological features,
was compared against two benchmark models: a traditional Activity-Based Costing (ABC)
model using machine-hours and material weight as cost drivers, and a standard multivariate
linear regression model using the raw operational data. The key performance metric was the
Mean Absolute Percentage Error (MAPE) in predicting the monthly environmental cost for
each production line. The hybrid SOM-GBM framework achieved a MAPE of 8.7% on the test
set, a 42% improvement over the ABC model (MAPE: 15.0%) and a 35% improvement over
the linear regression model (MAPE: 13.4%). This result strongly supports the efficacy of the
learned topological representation for cost prediction.

More significant than the predictive accuracy were the diagnostic insights generated by the
unsupervised SOM. Visualization of the trained SOM map revealed a dense cluster of BMUs
in a region characterized by moderate production speed but high solvent purity and stable
temperature control. Further analysis of production records mapped to this cluster showed it
was associated with two different product lines from physically separate plants. Despite their
formal differences, the SOM identified that these states shared a highly efficient resource profile.
Conversely, the SOM identified sparse, high-quantization-error regions associated with states
of rapid production ramp-up following maintenance shutdowns. These states, while brief, were
linked to disproportionately high emissions and waste, a pattern not captured by monthly-
averaged data in the existing ABC system. This discovery led to a proposed procedural change
to implement a graduated ramp-up protocol, which engineering estimates suggested could reduce
waste-related costs by approximately 18% annually.

The novel Sustainability Performance Index (SPI) generated by the framework was tracked
against the plants’ quarterly financial performance (EBITDA margin). A rolling correlation
analysis showed that the 6-month lagged SPI had a correlation coefficient of 0.71 with EBITDA
margin, whereas the correlation for a traditional eco-efficiency ratio (output per kg COge) was
only 0.52. This suggests the ML-derived SPI, incorporating learned cost-criticality weightings
and operational typicality, is a more potent leading indicator of financial outcomes linked to

environmental efficiency, providing management with earlier and more actionable signals.

4 Conclusion

This research has presented and validated a novel, hybrid machine learning framework for en-
vironmental cost accounting and sustainability performance measurement. The work makes
several distinct and original contributions to the field. First, it demonstrates a successful
methodology for integrating unsupervised learning (SOM) for pattern discovery with supervised
learning (GBM) for predictive costing, applied to the complex, multi-stream data environment
of industrial operations. This hybrid approach allows the system to learn the intrinsic structure
of environmental impact from data, rather than imposing a pre-defined accounting model.

Second, the results confirm that this data-driven, topological approach to cost attribu-



tion significantly outperforms traditional activity-based methods in predictive accuracy. This
moves environmental cost accounting from a primarily descriptive, historical exercise towards
a prescriptive and predictive capability. Managers can use the framework to simulate the envi-
ronmental cost implications of operational changes before implementation.

Third, and perhaps most importantly, the framework’s unsupervised component acts as a
powerful diagnostic tool, surfacing latent patterns of efficiency and waste that cross formal
organizational and product boundaries. The identification of the high-impact ramp-up states
is a clear example of a novel insight with direct, actionable implications for cost reduction
and environmental performance improvement, an insight obscured by conventional accounting
aggregates.

Finally, the derivation of a Sustainability Performance Index from the model’s internal
learned weights offers a new paradigm for composite indicator construction. By grounding the
index in the empirical relationship between operational states and financial-environmental cost,
it provides a more robust and financially relevant measure of sustainability performance than
indices based on fixed, normative weightings.

The limitations of this study include its focus on the manufacturing sector and the need
for relatively high-resolution data infrastructure. Future work will explore the transferability
of the framework to other sectors like logistics or agriculture, and investigate the integration
of deep learning architectures to model even longer-term temporal dependencies. In conclu-
sion, this research establishes a compelling case for machine learning not merely as a tool for
automation within existing accounting paradigms, but as a catalyst for fundamentally reimagin-
ing how organizations understand, account for, and manage their relationship with the natural

environment.
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