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Abstract

This research introduces a novel methodological framework for constructing predictive
models that integrate environmental performance indicators (EPIs) with traditional finan-
cial metrics to forecast corporate outcomes. Moving beyond conventional siloed analyses, we
propose a hybrid approach that synthesizes principles from ecological economics, complex
systems theory, and machine learning to model the interdependencies between environmen-
tal stewardship and financial viability. The core innovation lies in the formulation of a cou-
pled oscillator model, inspired by predator-prey dynamics in ecology, which conceptualizes
environmental and financial capital as two interacting, non-linear systems. This model is op-
erationalized using a custom-designed neural network architecture that processes time-series
data on carbon intensity, water usage, waste diversion, and biodiversity impact alongside
standard financial ratios. We apply this framework to a longitudinal dataset of manufactur-
ing firms from 1995 to 2004. Our results demonstrate that the integrated model significantly
outperforms benchmark models using only financial data in predicting one-year-ahead stock
price volatility and the probability of regulatory incidents. A key unique finding is the iden-
tification of a non-linear ’sustainability resonance’ point, where synchronized improvements
in specific EPIs correlate with a disproportionate stabilization of financial performance, a
relationship obscured in linear or disconnected analyses. This work provides a new computa-
tional lens for understanding corporate sustainability, challenging the paradigm of trade-off

and introducing actionable metrics for integrated performance forecasting.
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1 Introduction

The historical schism between environmental management and financial analysis has fostered
a pervasive narrative of inherent trade-off: ecological stewardship is frequently framed as a fi-
nancial cost, while profitability is often pursued at the expense of environmental integrity. This
conceptual divide is mirrored in analytical practice, where environmental performance indica-
tors (EPIs) and financial performance indicators (FPIs) are typically monitored, reported, and
modeled in isolation. Predictive models in finance rarely incorporate EPIs beyond rudimentary
compliance flags, and environmental models seldom account for the dynamic feedback loops of
capital markets. This research posits that this separation is not only analytically limiting but

fundamentally misrepresents the complex, interdependent reality of modern industrial systems.



We argue that environmental and financial capitals are not separate pools but are dynami-
cally coupled, with flows and stocks influencing one another through direct operational links,
regulatory channels, reputational mechanisms, and resource constraints.

Our primary research question is therefore: Can a predictive model that explicitly formal-
izes the dynamic coupling between environmental and financial performance indicators provide
superior forecasts of corporate outcomes compared to models that treat these domains inde-
pendently? To address this, we move beyond simple linear additive models that include EPIs
as additional regressors. Instead, we draw an unconventional analogy from theoretical ecol-
ogy, modeling the relationship between a firm’s environmental and financial states as a pair of
coupled, non-linear oscillators. This perspective allows for the emergence of complex behav-
iors—synchronization, phase-locking, resonance, and dampening—that may characterize the
real-world interaction between these two forms of capital. The novelty of this work lies in
this theoretical reformulation and its computational instantiation through a bespoke machine
learning architecture designed to learn the coupling parameters from observed data.

We test this framework on a panel of North American manufacturing firms from 1995 to
2004, a period marked by growing environmental regulation and voluntary reporting initiatives.
The predictive tasks focus on financial volatility and regulatory risk, outcomes theorized to be
sensitive to the interplay between environmental and financial conditions. The findings chal-
lenge the simplistic trade-off model, revealing specific conditions under which environmental and
financial performance become mutually reinforcing, leading to a state of reduced systemic risk
for the firm. This contribution is both methodological, offering a new tool for integrated per-
formance analytics, and substantive, providing empirical evidence for the financial materiality

of coupled environmental-financial dynamics.

2 Methodology

Our methodology is built upon three foundational pillars: a theoretical model of coupled dy-
namics, a novel neural network architecture for parameter estimation and prediction, and a
carefully constructed longitudinal dataset.

The theoretical core is the Coupled Environmental-Financial Oscillator (CEFO) model. Let
E(t) represent a composite index of a firm’s environmental state (derived from normalized EPIs)

and F'(t) represent a composite index of its financial health (derived from key FPIs). Drawing



inspiration from the Lotka-Volterra equations and coupled harmonic oscillators, we propose a

simplified governing system:
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Here, wg and wyp are intrinsic oscillation frequencies (e.g., related to reporting cycles or market
rhythms), v and v are damping coefficients (representing internal dissipation or resistance to
change), and «j;, B;; are coupling coefficients that define the strength and type of interaction
between the systems. A positive agp suggests financial performance exerts a restorative force
on environmental state, while a Sgr term allows for velocity-dependent coupling, modeling how
rates of change in one domain influence the other. This formulation allows for the possibility of
resonance, where specific frequencies of interaction lead to amplified system behavior.

Operationalizing the CEFO model with real-world, noisy, discrete-time data requires a flex-
ible estimation framework. We developed a Coupled Dynamics Neural Network (CDNN). The
network has two primary sub-modules: an encoder that transforms raw, multi-dimensional time-
series inputs for EPIs and FPIs into latent representations hr and hg, and a coupled dynamics
cell (CDC). The CDC is a recurrent module whose internal state update rules are inspired by
the discretized form of the CEFO equations. It takes the latent vectors and previous states
to compute the next latent states, effectively learning the coupling parameters («, 8,7v,w) as
weights within its connections. The final layers map the evolved latent states to the prediction
targets: normalized stock return volatility and a regulatory action probability score for the
subsequent year.

Data was compiled from multiple sources for the period 1995-2004. Financial data came
from Compustat, focusing on ratios like return on assets, debt-to-equity, and current ratio.
Environmental data was manually collected from corporate environmental reports, the Toxics
Release Inventory, and the nascent Global Reporting Initiative (GRI) disclosures where avail-
able. Key EPIs included greenhouse gas emissions intensity, water withdrawal per unit output,
hazardous waste generation, and a qualitative score for biodiversity management policies. The
sample was restricted to manufacturing firms (SIC 2000-3999) with at least six years of con-
secutive data, resulting in a final unbalanced panel of 127 firms. The models were trained on

data from 1995-2001 and tested on the 2002-2004 hold-out period. Benchmark models included



a standard financial-only multilayer perceptron (MLP), a linear regression with EPI additives,

and a traditional recurrent neural network (RNN) without the coupled dynamics constraint.

3 Results

The performance of the proposed CDNN model was evaluated against the benchmark models
on the test set (2002-2004). For predicting next-year stock price volatility (measured as the
standard deviation of monthly returns), the CDNN achieved a mean absolute error (MAE) of
0.041, compared to 0.055 for the financial-only MLP, 0.058 for the linear model with EPIs, and
0.050 for the standard RNN. A Diebold-Mariano test confirmed the CDNN'’s superiority over
all benchmarks at the p j 0.01 level. For the binary prediction of experiencing a significant
environmental regulatory action (fine, sanction, or mandatory injunction), the CDNN attained
an area under the ROC curve (AUC) of 0.81, substantially higher than the financial-only MLP
(AUC=0.68) and the linear model (AUC=0.71).

More insightful than aggregate accuracy are the patterns learned by the CDNN’s internal
coupling parameters. Analysis of the learned weights revealed that, for the majority of firms,
the coupling coefficient apg (environmental state influencing financial acceleration) was positive
and significant, while Sgp (rate of financial change influencing environmental acceleration)
was often negative. This suggests a model where a firm’s environmental condition exerts a
direct, stabilizing force on its financial trajectory, whereas rapid financial growth or decline can
introduce a dampening effect on environmental improvement efforts—a nuanced finding that
contradicts simple linear narratives.

The most unique finding emerged from analyzing firms where the CDNN made its most
accurate predictions. In these cases, the model’s internal latent states exhibited a phenomenon
analogous to phase-locking. When the derived composite indices E(t) and F(t) for a firm
entered a specific regime—characterized by moderate, synchronized improvement in both water
efficiency and waste diversion alongside stable profitability—the predicted financial volatility
plummeted. We term this the ”sustainability resonance” point. Post-hoc statistical analysis of
the actual outcomes for firms the model identified as near this resonance point showed their
volatility was 30% lower than similar firms not in this regime. This resonance effect was not
detectable by simply looking at correlations or by including EPIs as linear terms; it required

the non-linear, coupled systems perspective to be revealed.



Furthermore, the model identified specific EPI combinations that were more predictive than
others. Biodiversity management policy scores, though often qualitative, showed a strong cou-
pling strength (apg) with long-term financial stability, possibly acting as a proxy for strategic
environmental management capacity. In contrast, absolute carbon emissions were less predic-
tive than carbon intensity (emissions per revenue), highlighting the importance of normalized,

efficiency-based metrics in the coupled framework.

4 Conclusion

This research has presented and validated a novel framework for integrating environmental
and financial performance indicators within a unified predictive model. By conceptualizing
the two domains as a pair of coupled, non-linear oscillators and implementing this concept
through a custom neural network architecture, we have demonstrated that such integration is
not only feasible but analytically powerful. The Coupled Dynamics Neural Network significantly
outperformed traditional models in forecasting financial volatility and regulatory risk, providing
empirical evidence that the interdependence of environmental and financial capital is a material
factor for corporate forecasting.

The original contributions of this work are threefold. First, it offers a new theoretical lens,
the CEFO model, for understanding the dynamic interplay between sustainability and finance,
moving beyond static trade-offs to explore dynamic equilibria and resonant states. Second, it
provides a novel computational method, the CDNN, to estimate these dynamics from real-world
data, bridging theoretical ecology and financial machine learning. Third, it yields the unique
empirical discovery of a ”sustainability resonance” point, a specific configuration of synchronized
environmental and financial improvements associated with disproportionately high financial
stability. This finding has direct implications for corporate managers and investors, suggesting
targeted, integrated strategies rather than isolated initiatives.

Limitations of the current study include the historical data range (ending in 2004) and
the manual collection of environmental data, which limited sample size. Future work will
expand the dataset to more recent years, explore sector-specific coupling parameters, and refine
the CDNN architecture. Furthermore, the principles of this approach could be extended to
integrate social performance indicators, creating a truly holistic triple-bottom-line predictive

analytics framework. In conclusion, this research establishes that breaking down the analytical



silo between environmental and financial performance is not merely an ethical imperative but
a source of significant predictive advantage and deeper insight into the complex system of the

modern corporation.
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