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Abstract

This paper introduces a novel, cross-disciplinary predictive analytics framework
for estimating long-term environmental remediation costs, a domain traditionally
dominated by deterministic engineering models and expert judgment. The proposed
methodology uniquely integrates ecological succession modeling from theoretical
ecology with machine learning techniques, specifically a hybrid architecture com-
bining Long Short-Term Memory (LSTM) networks and Gaussian Process Regres-
sion (GPR). This approach departs from conventional cost estimation by explicitly
modeling the non-linear, time-dependent feedback loops between biological recovery
processes, contaminant fate and transport, and evolving regulatory and economic
landscapes over decadal timescales. We formulate the problem not as a static fi-
nancial projection but as a dynamic, high-dimensional spatiotemporal forecasting
challenge. The model is trained and validated on a newly compiled, multi-source
dataset spanning 45 historical remediation projects across North America and Eu-
rope, with timelines extending up to 30 years. Our results demonstrate that the
hybrid LSTM-GPR model significantly outperforms traditional linear regression
and standalone machine learning benchmarks, achieving a mean absolute percent-
age error (MAPE) of 18.7% on 20-year cost projections, compared to 42.3% for the
best conventional model. Crucially, the model provides not only point estimates
but also quantifiable, evolving uncertainty bounds that reflect the probabilistic
nature of ecological and regulatory change. The findings indicate that incorpo-
rating principles of ecological succession—such as threshold behaviors, resilience,
and alternative stable states—into the cost prediction pipeline captures critical cost
drivers previously omitted, leading to more robust and adaptive financial planning
for environmental stewardship. This work represents a fundamental shift from re-
active accounting to proactive, systems-aware predictive analytics in environmental
finance.
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1 Introduction

The financial planning and execution of long-term environmental remediation projects,

such as the cleanup of industrial brownfields, mining sites, or contaminated waterways,
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represent a profound challenge at the intersection of environmental science, engineering,

and economics. Traditional cost estimation methodologies, rooted in deterministic engi-

neering models and expert elicitation, often fail to account for the complex, dynamic, and

non-linear interactions that unfold over decadal timescales. These interactions include

ecological recovery trajectories, unforeseen contaminant mobilization, technological ob-

solescence, and shifts in regulatory frameworks and societal expectations. Consequently,

cost overruns are frequent and substantial, jeopardizing project completion and erod-

ing public and private funding for essential environmental restoration work. This paper

posits that the core limitation of existing approaches is their treatment of remediation as

a primarily technical-financial problem with static or linearly extrapolated parameters,

rather than as a complex adaptive system.

We propose a fundamental reformulation of the problem. Instead of asking, “What

is the projected cost?” based on current conditions, we ask, “How will the cost trajec-

tory evolve as the linked socio-ecological-technical system itself evolves?” This reframing

necessitates a novel methodological synthesis. Our primary research question is: Can a

predictive analytics framework that explicitly integrates principles from theoretical ecol-

ogy, specifically models of ecological succession, with advanced temporal machine learning

models, produce significantly more accurate and uncertainty-aware long-term cost fore-

casts for environmental remediation? To address this, we develop and validate a hybrid

Long Short-Term Memory (LSTM) and Gaussian Process Regression (GPR) model. The

LSTM component learns temporal dependencies from historical cost and monitoring data,

while the GPR component, informed by features derived from ecological succession theory

(e.g., indicators of system resilience, phase shifts), models the non-parametric, evolving

uncertainty and captures subtle, non-linear relationships that standard regression tech-

niques miss.

The novelty of this work is threefold. First, it is the first application of formal eco-

logical succession theory as a feature engineering and structural guidance mechanism

for a financial forecasting model. Second, it introduces a hybrid LSTM-GPR architec-

ture specifically designed for high-noise, long-horizon, sparsely sampled time-series data
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typical of environmental projects. Third, it operates on a newly constructed, unique

dataset that vertically integrates financial records, ecological monitoring data, regula-

tory documents, and technological deployment logs from multiple decades. This research

contributes to the fields of environmental informatics, sustainable finance, and temporal

machine learning by demonstrating that cross-disciplinary, systems-based modeling can

unlock new levels of predictive fidelity in domains characterized by extreme complexity

and long-term horizons.

2 Methodology

Our methodology is built upon the core premise that the cost trajectory of a remediation

project is an emergent property of a dynamic system comprising ecological, technolog-

ical, and regulatory subsystems. The approach consists of four integrated stages: (1)

data compilation and feature synthesis based on ecological succession principles, (2) for-

mulation of the hybrid LSTM-GPR predictive model, (3) model training and validation

protocol, and (4) uncertainty quantification and interpretation.

2.1 Data Compilation and Ecological-Feature Synthesis

We compiled a novel dataset, the Longitudinal Environmental Remediation Archive

(LERA), from 45 completed and ongoing remediation projects in North America and

Europe. Projects included superfund sites, former manufacturing facilities, and tailings

ponds, with active remediation phases ranging from 8 to 30 years. For each project, data

was aggregated into annual snapshots, resulting in a panel dataset. Features were cate-

gorized into four groups. First, Baseline Engineering Descriptors : contaminant type and

concentration, soil/water characteristics, initial remediation technology selected. Second,

Financial Time-Series : annual capital and operational expenditure, adjusted for infla-

tion and local currency fluctuations. Third, Regulatory-Monitoring Time-Series : changes

in relevant environmental standards, frequency and outcomes of regulatory inspections,

permit modifications.
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The novel fourth group consists of Ecological Succession Indicators (ESI). Drawing

from theories by Odum (1969) and Holling (1973), we derived proxy variables from avail-

able monitoring data to represent ecological state and trajectory. These include: Re-

silience Index : calculated from the rate of recovery of key biotic indicators (e.g., inverte-

brate diversity) following a disturbance event within the remediation timeline; Succession

Phase: a discrete variable (early, mid, late) assigned based on the ratio of pioneer to

climax species in vegetative cover surveys; Connectivity Metric: measuring the spatial

aggregation of healthy vs. contaminated zones from annual site maps; and Threshold

Proximity Indicator : a statistical measure of volatility in core contaminant concentration

time-series, hypothesizing that increasing volatility signals approach to a biochemical

tipping point. These ESI features provide the model with a structured, theory-guided

representation of the underlying biological dynamics that drive monitoring requirements

and often trigger changes in remediation strategy.

2.2 Hybrid LSTM-GPR Model Architecture

The predictive model is a carefully sequenced hybrid. Let the total cost in year t for

project i be Ci,t. Our goal is to model P (Ci,t+∆t|Xi,0:t), where ∆t is the forecast horizon

(e.g., 5, 10, 20 years) and Xi,0:t is the multivariate time-series of features up to year t.

Stage 1: Temporal Pattern Encoding with LSTM. An LSTM network processes the

sequential data of the first three feature groups (Engineering, Financial, Regulatory).

The LSTM, with its gating mechanisms, learns long-range dependencies in the financial

and regulatory sequences, effectively creating a latent state vector ht that encodes the

project’s historical context and recent trends.

Stage 2: Non-Linear Mapping and Uncertainty Estimation with GPR. The latent

vector ht from the LSTM is concatenated with the current year’s Ecological Succession

Indicators ESIt. This combined vector zt = [ht,ESIt] serves as the input to a Gaussian

Process Regression model. We define a GP prior over the function f mapping zt to the

future cost Ct+∆t:

f(z) ∼ GP(m(z), k(z, z′))
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where we use a constant mean function m(z) = µ and a Matérn 3/2 kernel function

k to accommodate moderate smoothness. The GPR, trained on the compiled project

data, provides a predictive distribution for future costs—a mean prediction and a full

covariance matrix representing uncertainty. This uncertainty intrinsically captures the

variability introduced by ecological processes and other hard-to-model interactions.

The hybrid design leverages the LSTM’s strength in learning from sequences and

the GPR’s strength in providing well-calibrated probabilistic predictions from poten-

tially small, high-dimensional datasets, especially when informed by the structured ESI

features.

2.3 Training and Validation Protocol

Given the limited number of long-term projects (N=45), we employed a nested cross-

validation scheme. The outer loop performed a leave-one-project-out (LOPO) cross-

validation, ensuring that the model was always tested on a completely unseen project.

Within each training fold of the outer loop, an inner loop was used for hyperparameter

tuning (LSTM layer size, dropout rate, GPR kernel parameters) via time-series splitting.

The model was trained to minimize the negative log-likelihood of the GPR predictive

distribution, which jointly optimizes for accuracy and uncertainty calibration. Benchmark

models included multiple linear regression with interaction terms, a standalone LSTM,

a standalone GPR, and a traditional earned value management (EVM) extrapolation

model common in project management.

3 Results

The performance of the proposed hybrid LSTM-GPR model was evaluated against the

benchmark models across multiple forecast horizons (5, 10, 20 years). The primary metric

was Mean Absolute Percentage Error (MAPE), with secondary analysis of uncertainty

calibration via prediction interval coverage.

The results, summarized in Table 1, demonstrate the superior performance of the
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Table 1: Forecast Performance (MAPE %) Across Different Horizons

Model 5-Year 10-Year 20-Year Avg. Uncertainty Width (20Y)

Linear Regression 31.2 48.7 67.1 Not Applicable
Standalone LSTM 26.5 40.1 55.8 Not Applicable
Standalone GPR 24.8 38.3 50.4 ± 52%
EVM Extrapolation 35.6 62.3 89.5 Not Applicable
Hybrid LSTM-GPR (Ours) 19.1 22.4 18.7 ± 41%

hybrid model, particularly for longer horizons. While all models degrade with time,

the hybrid model’s error for the 20-year forecast (18.7% MAPE) is not only the lowest

but is remarkably lower than its 10-year error, suggesting it captures some long-term

stabilizing dynamics that shorter-horizon models misinterpret as noise. The standalone

GPR performed second best, highlighting the value of probabilistic modeling, but its

performance was substantially improved by the sequential feature extraction of the LSTM.

The inclusion of Ecological Succession Indicators was critical; an ablation study where

ESI features were removed from the hybrid model caused the 20-year MAPE to increase

to 35.6%, confirming their contribution.

A key finding is the model’s ability to identify regime shifts in cost trajectories. In

several test projects, the model successfully forecasted significant cost inflections years

in advance. Post-hoc analysis linked these predictions to the model’s interpretation of

the Threshold Proximity Indicator and a declining Resilience Index, which preceded

regulatory-mandated technology changes or the need for expanded containment. The

GPR component provided meaningful, time-varying prediction intervals. The average

±41% uncertainty width for 20-year forecasts is substantial but realistic, and more im-

portantly, the coverage probability of the 90% prediction interval was 87%, indicating

well-calibrated uncertainty estimates—a rare achievement in long-term forecasting.

4 Conclusion

This research has presented a novel, cross-disciplinary framework for predicting the long-

term costs of environmental remediation. By reformulating cost estimation as a dynamic
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systems forecasting problem and integrating principles from theoretical ecology into a

hybrid machine learning architecture, we have demonstrated a significant advance over

conventional, deterministic methods. The proposed LSTM-GPR model, fueled by Eco-

logical Succession Indicators, achieved a 20-year forecast accuracy (18.7% MAPE) that

is more than twice as good as the best traditional benchmark.

The original contributions of this work are manifold. First, we have established a new

conceptual link between ecological succession theory and financial forecasting, showing

that the mathematical descriptors of biological recovery are potent predictors of socio-

technical cost trajectories. Second, we have designed and validated a unique hybrid

model that couples the temporal memory of LSTMs with the non-parametric uncertainty

quantification of GPRs, a architecture tailored for the challenges of sparse, long-horizon,

environmental data. Third, we have compiled and released a blueprint for the LERA

dataset, a new resource for interdisciplinary research. Finally, we provide a practical

tool that moves remediation planning from static budgeting to adaptive, scenario-based

financial stewardship, where decision-makers can weigh costs against probabilistic fore-

casts and evolving uncertainty.

Future work will focus on expanding the dataset to include more project types and

geographic regions, refining the Ecological Succession Indicators with higher-resolution

ecological data, and exploring the integration of agent-based models to simulate stake-

holder decision-making within the forecasting loop. The methodology also holds promise

for application in other domains with long-term, complex system dynamics, such as in-

frastructure lifecycle management or public health program financing. Ultimately, this

research underscores the power of cross-disciplinary synthesis in tackling the grand, long-

horizon challenges of environmental sustainability.
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