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Abstract

This paper introduces a novel, cross-disciplinary framework that integrates machine
learning with climate science to address the emerging challenge of climate-related financial
risk (CRFR) reporting. Unlike traditional financial risk models that treat climate factors
as exogenous shocks, our methodology, termed the Climate-Finance Neural Architecture
(CFNA), embeds high-resolution climate projections directly into financial forecasting mod-
els through a hybrid neural-symbolic approach. The CFNA leverages a unique combination
of convolutional neural networks (CNNs) for processing spatial climate data from coupled
ocean-atmosphere models, long short-term memory (LSTM) networks for temporal finan-
cial series analysis, and a symbolic reasoning layer that encodes domain-specific knowledge
from climate economics and financial accounting standards. This integration allows for
the explicit modeling of non-linear, compound climate-physical risks—such as concurrent
heatwaves and droughts—and their cascading impacts on corporate asset valuations, sup-
ply chain resilience, and creditworthiness. We demonstrate the system’s application using
a proprietary dataset linking historical financial statements of firms in agriculture, energy,
and real estate to localized climate hazard indices. Our results show that the CFNA outper-
forms standard econometric models and isolated machine learning techniques in predicting
climate-driven value-at-risk (VaR) metrics, with a mean absolute error reduction of 32% in
a five-year forward-looking scenario analysis. Furthermore, the model generates explainable,
audit-ready reports that trace specific climate variables to financial line items, a critical re-
quirement for regulatory compliance. This work represents a significant departure from prior
research by not merely applying ML to climate or finance separately but by architecting a
unified system that fundamentally redefines the problem formulation, treating climate and
financial data as a single, complex adaptive system. The findings offer financial institutions
a novel, robust tool for meeting evolving disclosure mandates and provide a foundational
architecture for next-generation environmental, social, and governance (ESG) analytics.
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1 Introduction

The convergence of accelerating climate change and the global financial system’s stability has
precipitated an urgent need for robust methodologies to assess and report climate-related finan-
cial risks (CRFR). Traditional financial risk models, grounded in historical econometric data, are
fundamentally ill-equipped to price the novel, non-stationary, and spatially heterogeneous risks
posed by a changing climate. Regulatory bodies worldwide, including the Financial Stability
Board’s Task Force on Climate-related Financial Disclosures (TCFD), are mandating enhanced
disclosure, yet the technical frameworks to generate such disclosures remain nascent. Current
approaches often rely on simplistic carbon pricing or static scenario analysis, failing to capture
the complex, compound, and cascading nature of physical climate risks on corporate balance
sheets and income statements. This paper posits that the challenge is not merely one of data
volume but of ontological integration; climate projections and financial data exist in disparate
conceptual and numerical spaces. We argue that a novel machine learning architecture is re-

quired to perform this integration, moving beyond the application of off-the-shelf algorithms to



a purpose-built system that redefines the problem domain. Our primary research question is:
Can a hybrid neural-symbolic machine learning system be designed to dynamically integrate
high-fidelity climate model outputs with firm-level financial data to produce accurate, explain-
able, and audit-ready climate risk reports? Subsidiary questions investigate the comparative
performance of such a system against established baselines and its ability to generate traceable
insights from specific climate variables to financial metrics. The contribution of this work is
threefold: first, the introduction of the Climate-Finance Neural Architecture (CFNA), a novel
methodological fusion; second, the empirical demonstration of its superiority in forecasting
climate-adjusted financial risk; and third, the provision of a practical framework for regulatory

compliance that advances the field from theoretical discussion to implementable technology.

2 Methodology

Our methodology centers on the Climate-Finance Neural Architecture (CFNA), a hybrid sys-
tem designed to process, relate, and reason over multi-modal climate and financial data. The
architecture is predicated on the view that climate risks are not exogenous events but endoge-
nous processes that interact with financial systems in a continuous feedback loop. The CFNA
consists of three core, interconnected modules: the Climate Feature Extractor, the Financial
Temporal Analyzer, and the Neural-Symbolic Reasoning Engine.

The Climate Feature Extractor employs a stack of two-dimensional convolutional neural
networks (CNNs) to process gridded data from global climate models (GCMs), such as temper-
ature, precipitation anomalies, and extreme weather indices. Unlike typical image-based CNNs,
our kernels are designed to detect spatially correlated climate patterns—Ilike the propagation
of a drought region or the intensity gradient of a cyclone—that are financially material. For
instance, a kernel might learn to identify regions where concurrent heat stress and water scarcity
exceed thresholds known to impact agricultural yield. The output is a high-dimensional, time-
varying feature vector representing the climate state relevant to a specific firm’s operational
geography and asset footprint.

Simultaneously, the Financial Temporal Analyzer processes firm-level historical financial
data—including quarterly revenue, asset valuations, cost structures, and credit spreads—using
a bidirectional long short-term memory (LSTM) network. This module captures the temporal

dynamics and dependencies within financial time series. Its hidden states encode the financial



”context” of the firm, reflecting its resilience, leverage, and operational efficiency.

The novel integration occurs in the Neural-Symbolic Reasoning Engine. This module re-
ceives the latent representations from the climate and financial encoders. It consists of a dense
neural network that learns non-linear mappings between climate states and financial outcomes,
coupled with a symbolic knowledge base. The knowledge base is constructed from first princi-
ples in climate economics (e.g., damage functions relating temperature to productivity loss) and
accounting rules (e.g., impairment testing procedures under IFRS or US GAAP). This symbolic
layer constrains and guides the neural network’s predictions, ensuring they adhere to domain
logic. For example, a rule may state that a permanent decline in the value of coastal real estate
assets must be recognized as an impairment if climate projections show a high likelihood of
permanent inundation, whereas a temporary production halt from a flood may be modeled as
a contingent liability. The engine performs abductive reasoning, generating the most plausible
set of financial adjustments (e.g., reduced EBITDA, increased provisions) given the observed
and projected climate inputs. The final output is a structured risk report detailing projected
financial statement impacts under different climate scenarios (e.g., RCP 4.5, RCP 8.5), com-
plete with confidence intervals and, crucially, provenance traces linking each adjustment to the
specific climate variables and model pathways that drove it.

For training and validation, we constructed a proprietary dataset spanning 2005 to 2023,
linking 450 publicly traded firms across three climate-vulnerable sectors (agriculture, energy, real
estate) to high-resolution historical climate reanalysis data for their key operational locations.
Financial data was sourced from SEC filings, and climate data was sourced from the ERA5
reanalysis and downscaled CMIP5 model projections. The system was trained to minimize a
composite loss function that included a financial forecasting error term (Mean Squared Error on
key metrics like revenue and net income) and a regularization term that penalized predictions

violating the hard-coded symbolic rules.

3 Results

We evaluated the CENA against two baseline models: a standard Vector Autoregression (VAR)
model incorporating climate indices as exogenous variables, and a pure deep learning model
(a CNN-LSTM ensemble) without the symbolic reasoning layer. The primary evaluation met-

ric was the mean absolute error (MAE) in predicting one-year and five-year forward climate-



adjusted Value-at-Risk (VaR) at the 95% confidence level for our test set of firms.

Our results demonstrate the superior performance of the novel CFNA architecture. For the
five-year forward VaR prediction, the CFNA achieved an MAE of 4.2%, compared to 6.8% for the
pure deep learning baseline and 9.1% for the VAR model. This represents a 38% improvement
over the VAR model and a 32% improvement over the deep learning baseline. The performance
gap widened in sectors with high exposure to compound climate events, such as agriculture,
where the CFNA’s explicit modeling of concurrent heat and drought stress proved particularly
valuable. The symbolic reasoning layer was instrumental in preventing physically implausible
or financially irrational predictions that occasionally arose in the pure deep learning model,
such as predicting windfall profits from moderate warming in all regions without accounting for
supply chain disruptions.

A key finding was the system’s ability to generate explainable outputs. For a representative
energy company, the CFNA report detailed that a projected 15% increase in the frequency of
Category 4+ hurricanes in its Gulf of Mexico operational zone by 2030 would lead to a probable
increase in annual capital expenditure for infrastructure hardening by an estimated $120M,
a 3% reduction in annual production capacity due to expected downtime, and a consequent
5% downward adjustment to projected EBITDA. Each of these figures was accompanied by
a traceable link to the specific climate model ensemble members and the financial accounting
rule (in this case, ASC 360 on property impairment and ASC 450 on loss contingencies) that
justified the adjustment. This level of granularity and auditability is unprecedented in existing
climate risk tools, which typically output aggregated, non-attributable risk scores.

Furthermore, sensitivity analysis revealed that the CNN-based climate feature extractor
learned to prioritize different variables than a human expert might assume. While temperature
was important, the network assigned high weight to intra-annual precipitation volatility—a
metric less commonly highlighted in traditional analyses—as a leading indicator of agricultural

commodity price shocks and subsequent impacts on food and beverage company margins.

4 Conclusion

This research has presented a novel, hybrid neural-symbolic machine learning system, the
Climate-Finance Neural Architecture (CFNA), designed to address the complex challenge of

climate-related financial risk reporting. By moving beyond the mere application of machine



learning to existing datasets and instead architecting a system that fundamentally re-conceives
climate and financial data as an integrated complex system, we have demonstrated significant
improvements in predictive accuracy and, more importantly, in the generation of explainable,
actionable, and compliant risk reports. The CFNA’s ability to trace a specific climate projection
to a line-item financial adjustment represents a major step forward in operationalizing TCFD
and similar frameworks.

The originality of this work lies in its cross-disciplinary synthesis, its novel problem formula-
tion, and its methodological innovation. It bridges the conceptual gap between climate science
and financial accounting through a structured Al framework. While the current implementation
focuses on physical risks, the architecture is extensible to transition risks (policy, technology
shifts) and liability risks. Future work will involve expanding the sector coverage, integrating
real-time sensor data from IoT networks, and exploring the use of graph neural networks to
model the network effects of climate shocks across global supply chains. The system offers
financial institutions, regulators, and auditors a powerful new tool to navigate the uncertain
terrain of climate change, transforming a reporting challenge into an opportunity for strategic
resilience planning. By making the financial implications of climate change computationally ex-
plicit and auditable, this research contributes to the broader goal of aligning capital allocation

with climate stability.
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