

Machine Learning Approaches to Environmental Cost Allocation in Manufacturing Firms

Madison Kelly

Makayla Ross

Marcus Ward

Abstract

This paper introduces a novel framework for environmental cost allocation in manufacturing firms by integrating machine learning techniques with activity-based costing principles. Traditional environmental accounting methods often rely on simplistic allocation bases that fail to capture the complex, non-linear relationships between production activities and their environmental impacts. Our research addresses this gap by proposing a hybrid methodology that combines unsupervised learning for activity clustering and supervised learning for impact prediction. We develop a two-stage model: first, using self-organizing maps to identify homogeneous activity clusters based on multi-dimensional environmental drivers; second, employing gradient boosting machines to predict environmental costs for each cluster. The methodology was validated using data from three manufacturing firms with diverse production processes. Results demonstrate that our approach reduces allocation errors by 42% compared to traditional volume-based methods and by 28% compared to conventional activity-based costing. Furthermore, the model reveals previously unrecognized cost drivers, including machine idle time patterns and raw material quality variations, which significantly influence environmental costs but are typically overlooked in standard accounting systems. The framework provides manufacturing managers with more accurate environmental cost information, enabling better decision-making for sustainable production. This research contributes to both environmental accounting and machine learning applications by demonstrating how advanced analytics can transform traditional cost allocation practices, offering a more nuanced understanding of environmental cost causality in complex manufacturing environments.

Keywords: environmental accounting, machine learning, cost allocation, manufacturing, activity-based costing, sustainability

1 Introduction

The accurate allocation of environmental costs represents a significant challenge for manufacturing firms seeking to implement sustainable practices while maintaining economic viability. Traditional cost accounting systems, developed primarily for financial reporting and operational efficiency, often treat environmental costs as overhead expenses allocated using simplistic bases such as direct labor hours or machine hours. This approach fails to capture the complex causal relationships between specific production activities and their environmental consequences, leading to distorted product costs and suboptimal decision-making. As regulatory pressures intensify and stakeholder expectations evolve, manufacturing firms require more sophisticated methods to trace environmental costs to their true drivers.

This research addresses the fundamental disconnect between conventional cost allocation methods and the multidimensional nature of environmental impacts in manufacturing. While activity-based costing (ABC) represents an improvement over traditional volume-based allocation by linking costs to activities rather than arbitrary volume measures, even ABC systems typically rely on linear cost drivers that may not adequately represent environmental cost behavior. Environmental costs often exhibit non-linear relationships with production variables, threshold effects, and complex interactions between multiple factors. For instance, energy consumption may increase exponentially beyond certain production rates, waste generation may correlate with specific machine settings rather than output volume, and emissions may depend on intricate combinations of raw material characteristics and process parameters.

Our research proposes a novel integration of machine learning techniques with environmental cost accounting principles to develop a more accurate and insightful allocation framework. We hypothesize that machine learning algorithms, with their capacity to identify complex patterns in high-dimensional data, can significantly improve the accuracy of environmental cost allocation in manufacturing contexts. Specifically, we investigate whether unsupervised learning methods can better identify homogeneous activity clusters for cost

pooling, and whether supervised learning techniques can more accurately predict environmental costs based on multiple explanatory variables. The research questions guiding this study are: (1) How can machine learning techniques be integrated with activity-based costing principles to improve environmental cost allocation accuracy? (2) What types of environmental cost drivers, previously unrecognized in traditional accounting systems, can machine learning algorithms identify? (3) What practical implementation challenges arise when applying machine learning approaches to environmental cost allocation in manufacturing firms?

This research makes several original contributions to both accounting and machine learning literature. First, we develop a novel two-stage framework that combines self-organizing maps for activity clustering with gradient boosting machines for cost prediction. Second, we identify previously overlooked environmental cost drivers through pattern recognition in manufacturing data. Third, we provide empirical evidence of allocation accuracy improvements across diverse manufacturing contexts. Finally, we discuss implementation considerations for manufacturing firms seeking to adopt machine learning approaches for environmental cost management.

2 Methodology

The methodology developed for this research combines principles from environmental accounting, activity-based costing, and machine learning to create a novel framework for environmental cost allocation. The approach consists of four main phases: data collection and preparation, activity clustering using unsupervised learning, cost prediction using supervised learning, and validation through comparative analysis.

Data were collected from three manufacturing firms representing different industrial sectors: an automotive components manufacturer, a chemical processing plant, and an electronics assembly facility. The selection of diverse manufacturing contexts ensures the robustness and generalizability of the findings. Data collection spanned a twelve-month period and

included both financial and operational variables. Environmental costs were categorized according to the Environmental Protection Agency’s classification system, including pollution control costs, waste management expenses, regulatory compliance costs, and resource consumption costs. Operational data encompassed production volumes, machine utilization rates, energy consumption patterns, raw material characteristics, maintenance schedules, and quality metrics. In total, over 200 potential cost drivers were identified across the three firms.

The first stage of our methodology employs unsupervised learning techniques to identify homogeneous activity clusters for cost pooling. Traditional activity-based costing typically relies on managerial judgment or simple statistical methods to define activity centers. We propose using self-organizing maps (SOMs), a type of artificial neural network that performs dimensionality reduction while preserving topological properties of the data. The SOM algorithm organizes multi-dimensional activity data into a two-dimensional grid where similar activities are positioned close to each other. Each manufacturing activity is characterized by a vector of environmental driver variables, including energy intensity, material waste coefficients, emission factors, and regulatory sensitivity measures. The SOM training process uses competitive learning to adjust neuron weights until the map stabilizes, creating natural clusters of activities with similar environmental characteristics. This approach represents a significant departure from traditional activity identification methods, as it allows the data itself to reveal natural groupings based on comprehensive environmental profiles rather than relying on predetermined categories.

The second stage utilizes supervised learning algorithms to predict environmental costs for each activity cluster identified in the first stage. We employ gradient boosting machines (GBMs), an ensemble technique that builds multiple decision trees sequentially, with each new tree correcting errors made by previous trees. The GBM algorithm is particularly well-suited for environmental cost prediction because it can handle non-linear relationships, interaction effects, and heterogeneous data types. For each activity cluster, a separate GBM

model is trained using historical data, with environmental costs as the target variable and operational parameters as features. Feature importance analysis is conducted to identify the most influential cost drivers within each cluster. The model training process includes cross-validation to prevent overfitting and ensure generalizability to new data.

To validate the proposed methodology, we compare its allocation accuracy against two traditional approaches: volume-based allocation and conventional activity-based costing. Allocation accuracy is measured using mean absolute percentage error (MAPE) between predicted and actual environmental costs at the product level. Additionally, we analyze the stability of allocations across different production periods and the sensitivity of results to changes in input parameters. The validation process includes both in-sample testing using historical data and out-of-sample testing using a holdout dataset.

Implementation considerations are addressed through the development of a software prototype that integrates the machine learning algorithms with existing enterprise resource planning systems. The prototype includes modules for data extraction, preprocessing, model training, cost allocation, and visualization of results. User interface design emphasizes interpretability, allowing managers to understand the rationale behind allocation decisions and explore alternative scenarios.

3 Results

The application of our machine learning framework to environmental cost allocation yielded significant improvements in accuracy and provided novel insights into cost driver relationships. The results are presented in three main sections: clustering outcomes, prediction accuracy, and identified cost drivers.

The self-organizing maps successfully identified activity clusters that differed substantially from traditional activity categories used in conventional ABC systems. In the automotive components manufacturer, the SOM algorithm grouped activities into seven clusters

based on environmental characteristics, compared to the five activity centers previously defined by managerial judgment. Notably, the machine learning approach separated high-energy precision machining operations from similar-looking but less energy-intensive operations that had previously been combined. In the chemical processing plant, the SOM revealed that batch size variations created distinct environmental profiles that conventional ABC had treated as homogeneous. The electronics assembly facility showed particularly interesting clustering patterns, with activities grouping not by production stage but by combinations of solder type, board complexity, and cleaning method. These clustering results demonstrate that environmental cost drivers often cut across traditional departmental or process boundaries, suggesting that conventional activity definitions may obscure important cost causality relationships.

Prediction accuracy improvements were substantial across all three manufacturing contexts. Compared to traditional volume-based allocation, our machine learning framework reduced mean absolute percentage error by 42% (from 38% to 22%). Compared to conventional activity-based costing, the improvement was 28% (from 31% to 22%). The most significant accuracy gains occurred for products with complex environmental profiles that traditional methods struggled to allocate accurately. For instance, in the chemical plant, a specialty product with intermittent production schedules and varying raw material quality showed allocation errors of 67% under volume-based methods and 45% under conventional ABC, but only 18% under our machine learning approach. The gradient boosting machines demonstrated particular strength in capturing threshold effects, such as the non-linear increase in wastewater treatment costs when production exceeded certain capacity levels.

Feature importance analysis revealed several previously unrecognized environmental cost drivers. Across all three firms, machine idle time patterns emerged as significant predictors of energy-related environmental costs, even though idle machines are typically excluded from traditional allocation bases. Raw material quality variations, measured through impurity concentrations and consistency metrics, showed strong correlations with waste management

costs. In the electronics assembly facility, ambient humidity levels during certain production stages affected solvent evaporation rates and consequent volatile organic compound emissions. Perhaps most surprisingly, employee shift patterns (day vs. night operations) influenced multiple environmental cost categories, likely through variations in monitoring intensity, maintenance responsiveness, and energy pricing structures. These findings challenge conventional wisdom in environmental accounting, which has typically focused on more obvious drivers like production volume or direct material usage.

The stability analysis showed that machine learning allocations were more consistent across different time periods than traditional methods. While volume-based allocations fluctuated significantly with production volume changes, and conventional ABC allocations showed moderate variability with activity volume changes, our approach maintained stable cost assignments due to its consideration of multiple explanatory variables. Sensitivity testing revealed that the framework was robust to missing data and measurement errors, with allocation accuracy degrading gracefully rather than catastrophically as data quality decreased.

The software prototype successfully demonstrated practical implementation feasibility. Integration with existing ERP systems required custom adapters but followed standard data exchange protocols. Computational requirements were modest, with model training completed overnight and allocation calculations performed in near real-time. Visualization tools helped managers understand allocation rationales by showing the relative influence of different cost drivers and comparing alternative allocation scenarios.

4 Conclusion

This research has demonstrated that machine learning techniques can significantly improve the accuracy and insightfulness of environmental cost allocation in manufacturing firms. By integrating self-organizing maps for activity clustering with gradient boosting machines for

cost prediction, we have developed a novel framework that addresses fundamental limitations of traditional allocation methods. The framework captures complex, non-linear relationships between production activities and environmental impacts, leading to more accurate product costing and better-informed managerial decisions.

The primary theoretical contribution of this research lies in its integration of machine learning paradigms with environmental accounting principles. While previous literature has explored machine learning applications in various business domains, its application to cost allocation represents a novel intersection of disciplines. Our two-stage approach specifically addresses the dual challenges of activity definition and cost assignment that have long plagued activity-based costing implementations. The use of unsupervised learning for activity clustering represents a departure from the subjective, judgment-based approaches typically employed in ABC systems. Similarly, the application of gradient boosting machines for cost prediction extends beyond the linear cost functions assumed in most accounting models.

From a practical perspective, the research provides manufacturing managers with a more accurate understanding of environmental cost causality. The identification of previously unrecognized cost drivers, such as machine idle patterns and raw material quality variations, enables targeted interventions to reduce environmental impacts. More accurate cost allocation supports better pricing decisions, product mix optimization, and investment prioritization for environmental improvements. The software prototype demonstrates that implementation is feasible with existing technology infrastructure, though it requires investment in data collection systems and analytical capabilities.

Several limitations of the current research suggest directions for future work. The study examined only three manufacturing firms, and while they represented diverse industries, broader validation across additional sectors would strengthen the findings. The framework currently focuses on environmental costs, but the methodology could potentially be extended to other overhead categories that exhibit complex cost behavior. Longitudinal studies tracking the implementation and impact of machine learning allocation systems would provide

valuable insights into organizational adoption challenges and benefits realization.

Future research could explore several promising extensions of this work. Integration with real-time sensor data from Internet of Things devices could enable dynamic cost allocation that responds to changing production conditions. Application to service industries or supply chain contexts would test the generalizability of the approach beyond manufacturing. Comparative studies of different machine learning algorithms could identify optimal techniques for specific allocation contexts. Finally, research examining the behavioral and organizational implications of machine-based allocation systems would complement the technical focus of this study.

In conclusion, this research demonstrates that machine learning approaches offer substantial improvements over traditional methods for environmental cost allocation in manufacturing firms. By moving beyond simplistic allocation bases and linear cost functions, the proposed framework provides a more nuanced understanding of environmental cost causality. As manufacturing firms face increasing pressure to manage their environmental impacts while maintaining competitiveness, such advanced analytical approaches will become increasingly valuable for sustainable decision-making.

References

Bennett, M., James, P. (1998). *The Green Bottom Line: Environmental Accounting for Management*. Sheffield: Greenleaf Publishing.

Bouma, J. J., van der Veen, M. (2002). Wanted: A theory for environmental management accounting. In M. Bennett, P. M. Rikkhardsson, S. Schaltegger (Eds.), *Environmental Management Accounting: Purpose and Progress* (pp. 279–290). Dordrecht: Kluwer Academic Publishers.

Burritt, R. L., Hahn, T., Schaltegger, S. (2002). Towards a comprehensive framework for environmental management accounting: Links between business actors and environmental

management accounting tools. *Australian Accounting Review*, 12(2), 39–50.

Epstein, M. J. (1996). *Measuring Corporate Environmental Performance: Best Practices for Costing and Managing an Effective Environmental Strategy*. Chicago: Irwin Professional Publishing.

Figge, F., Hahn, T., Schaltegger, S., Wagner, M. (2002). The sustainability balanced scorecard: Linking sustainability management to business strategy. *Business Strategy and the Environment*, 11(5), 269–284.

Gray, R., Bebbington, J. (2001). *Accounting for the Environment*. London: Sage Publications.

Hastie, T., Tibshirani, R., Friedman, J. (2001). *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*. New York: Springer.

Kohonen, T. (2001). *Self-Organizing Maps*. Berlin: Springer.

Schaltegger, S., Burritt, R. L. (2000). *Contemporary Environmental Accounting: Issues, Concepts and Practice*. Sheffield: Greenleaf Publishing.

White, A. L., Savage, D., Shapiro, K. (1996). Life-cycle costing: Concepts and applications. In D. T. Ditz, J. B. Ranganathan, R. D. Banks (Eds.), *Green Ledgers: Case Studies in Corporate Environmental Accounting* (pp. 21–42). Washington, DC: World Resources Institute.